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Abstract— Detrended Fluctuation Analysis (DFA) is a statistical 

estimation algorithm used to assess long-range temporal 
dependence in neural time series. The algorithm produces a single 
number, the DFA exponent, that reflects the strength of long-
range temporal correlations in the data. No methods have been 
developed to generate confidence intervals for the DFA exponent 
for a single time series segment. Thus, we present a statistical 
measure of uncertainty for the DFA exponent in 
electroencephalographic (EEG) data via application of a moving-
block bootstrap (MBB). We tested the effect of three data 
characteristics on the DFA exponent: (1) time series length, (2) the 
presence of artifacts, and (3) the presence of discontinuities. We 
found that signal lengths of ~5 minutes produced stable 
measurements of the DFA exponent and that the presence of 
artifacts positively biased DFA exponent distributions. In 
comparison, the impact of discontinuities was small, even those 
associated with artifact removal. We show that it is possible to 
combine a moving block bootstrap with DFA to obtain an accurate 
estimate of the DFA exponent as well as its associated confidence 
intervals in both simulated data and human EEG data. We applied 
the proposed method to human EEG data to (1) calculate a time-
varying estimate of long-range temporal dependence during a 
sleep-wake cycle of a healthy infant and (2) compare pre- and post-
treatment EEG data within individual subjects with pediatric 
epilepsy. Our proposed method enables dynamic tracking of the 
DFA exponent across the entire recording period and permits 
within-subject comparisons, expanding the utility of the DFA 
algorithm by providing a measure of certainty and formal tests of 
statistical significance for the estimation of long-range temporal 
dependence in neural data.  
 

Index Terms—Bootstrapping, Confidence interval, Detrended 
fluctuation analysis, Fractal processes, Hurst exponent, Long-
term monitoring.  

I. INTRODUCTION 
HE strength of long-range temporal correlations in time 
series can be estimated by Detrended Fluctuation Analysis 

(DFA), a statistical method based on scaled windowed variance 
[1]. Although the technique originated to assess patterns in 
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DNA structure [2], the utility of DFA has expanded to probe 
long-range temporal structure in other physical systems such as 
daily temperature fluctuations [3], gait stride intervals [4], and 
heart rate variability [5]. Since the discovery of long-range 
temporal correlations in recordings from the human brain [6], 
neurophysiologists and clinicians have used DFA to analyze the 
long-range temporal structure in neural data associated with 
sensorimotor function [7], [8], cognitive development [9]–[11], 
neurologic disease [12]–[14], brain stimulation [15], [16], and 
brain trauma [17]–[19]. 

DFA is one of several algorithms that statistically estimates 
the Hurst exponent (H), a scalar value that reflects the level of 
self-similarity in time series [20]–[23]. The measure directly 
relates to the rate of decay of the autocorrelation function 
(Supplementary Figure 1) [24], [25]. When DFA is applied to a 
segment of time series data, it returns an estimate of the Hurst 
exponent, but it does not provide a statistical inference for that 
estimated Hurst exponent. Thus, statistical comparisons are 
done on distributions of DFA exponent values from groups of 
subjects. Without a quantification of the uncertainty in the 
estimate of H, within-subject comparisons (across conditions) 
and the assessment of statistically significant changes in the 
DFA exponent over time are not possible. In this study, we 
present a statistically rigorous method to estimate the 
confidence interval for the DFA exponent of human EEG data. 
This technique enables us to track long-term EEG temporal 
structure changes in an infant and to compare treatment 
responses in subjects diagnosed with epilepsy. 

Our method of statistical inference for DFA applied to neural 
data is based on the moving block bootstrap (MBB) [26], [27]. 
Bootstrapping and other Monte Carlo methods generate 
independently sampled data with similar statistics as the 
original signal. The MBB is a bootstrapping-based procedure 
that is applicable to signals with temporal autocorrelation (such 
as neural time series data) [28]. Using MBB, we generate 
distributions of estimates of the Hurst exponent by randomly 
sampling from blocks of a time series (rather than singleton 
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points, as in a classical bootstrapping technique), concatenating 
the blocks, and computing the test statistic over the new time 
series [27]. This preserves the dependence structure of the time 
series [26]. Although MBB has been used to generate empirical 
distributions of DFA exponents in simulated and financial 
returns time series [29], the challenge of bootstrapping EEG 
data for analysis with DFA has not been addressed. The 
extension to brain signals, in particular EEG, is not trivial 
because of the nonstationary and nonlinear nature of the signals, 
the continuous transition of brain states, and the presence of 
artifacts in the data [30]–[33]. We discuss practical 
considerations for implementation such as the minimum signal 
length required and the effect of introducing discontinuities 
through bootstrapping and artifact rejection. We then show how 
these methods can be applied to EEG data to assess changes in 
brain state and measure response to treatment in subjects 
diagnosed with epilepsy.  

II. METHODS 

A. Simulated Data Generation 
We used simulated data to show performance of the DFA 

algorithm under various conditions that are common in neural 
time series processing and MBB. Simulated fractional 
Brownian motion (fBm) was created by integrating fractional 
Gaussian noise (fGn) that was generated with a given Hurst 
exponent (H) [34]. We used the contributed MATLAB function 
“ffgn” [35] to create a temporally-correlated signal with H 
ranging from 0.50 to 0.99. The function generated exact paths 
of fractional Gaussian noise by means of circulant embedding 
for positively correlated signals (0.5<H<1.0) [36]. The number 
of data points in the generated signal corresponded to the 
number of samples in twenty minutes of EEG data at a sampling 
rate of 200 Hz to approximately match standard clinical data 
collected from human subjects.  

B. EEG Recording and Pre-processing 
 We retrospectively analyzed three human EEG datasets from 

infant subjects enrolled in two different studies at the Children’s 
Hospital of Orange County (CHOC) to assess the utility of 
MBB and DFA. Both of these studies investigated a seizure 
type known as infantile spasms. These studies were approved 
by the CHOC Institutional Review Board. 

In the first dataset, a board-certified pediatric epileptologist 
(DS) retrospectively identified 20-30 minute scalp EEG 
recordings from 21 normal infants aged 4-19 months (median 
6.3 months). All 21 recordings were ultimately classified as 
normal. This dataset was used to demonstrate the methods and 
parameter choices for MBB-DFA (see Sections 2D, 2E, 3B, and 
3C). We will refer to this dataset as the Control dataset. 

The second dataset was comprised of a long-term (>24 hour) 
video-EEG recording of a 7-month old otherwise normal infant 
who was having events suspected to be seizures. This recording 
was also ultimately classified as normal by the same 
epileptologist (DS). We selected a data segment that included 
126 minutes of wakefulness and 166 minutes of sleep, without 
regard to specific sleep stages. (See Sections 2F and 3E). We 

will refer to this dataset as the Long-Term dataset. 
Lastly, the third dataset consisted of recordings from two 

infants who were diagnosed with infantile spasms. These 
subjects were chosen to demonstrate changes in the DFA 
exponent distributions after treatment. Subject A was a 5.5-
month-old infant whose epilepsy was treated successfully with 
adrenocorticotropic hormone (ACTH), a common therapy for 
the disease. We selected 24.3 and 21.2 minutes of awake data 
from the pre-treatment and post-treatment recordings of this 
subject, respectively. The clipped segments were chosen 
because they were relatively free of artifacts. Successful 
treatment was defined as a cessation of seizures and resolution 
of an epileptiform EEG pattern known as hypsarrhythmia [37], 
[38]. Subject B was a 3.7-month-old infant who was treated 
unsuccessfully with vigabatrin, exhibiting persistent spasms 
and hypsarrhythmia after treatment initiation. This subject’s 
pre- and post-treatment EEG included 20.4 and 23.4 minutes of 
awake data, respectively. We will call this two-subject dataset 
the IS Subject dataset. 

All recordings consisted of nineteen scalp electrodes placed 
according to the international 10-20 system, sampled at 200 Hz 
with impedances below 5 kΩ. Artifacts were visually identified 
by DS in the broadband bandpass-filtered data (1.0-40 Hz). 
Start and end times of high-amplitude muscle activity, eye 
blinks, subject movement, poor electrode contact, impedance 
checks, and photic stimulation were marked. We added a buffer 
on either side of the visually marked artifactual time periods to 
account for any signal spread due to the filtering done prior to 
removal. EEG data were re-referenced to a linked-ear montage 
and divided into narrow frequency bands using FIR filters for 
the delta (1-4 Hz, order = 400), theta (4-7 Hz, order = 100), 
alpha (8-12 Hz, order = 50), and beta (14-30 Hz, order = 29) 
frequency bands (Supplementary Figure 2). After the bandpass 
filter was applied, the time periods marked as artifact were 
removed from all channels and the remaining clean data 
segments were concatenated. This procedure was followed 
whenever artifacts were removed from the data. Note that for 
some analyses (Section II. E and F), some or all of the artifacts 
were purposely left in the data. 

C. Detrended Fluctuation Analysis 
Detrended Fluctuation Analysis was applied to both simulated 

and human scalp EEG data. We repeat the algorithm here for 
completeness; all steps are as originally described in Peng et al. 
and Hardstone et al. except where indicated [2], [39]: 

We define  to be the EEG time series with zero mean, 
and  to be the Hilbert transform of  where 

. (1) 
The magnitude of the Hilbert transform is  

, (2) 
representing the amplitude envelope. We define  to be the 
average  where  is the number of samples in the 
time series. The signal profile at time  is the integrated zero-
mean envelope 

 (3) 
Note that in the simulated data, the mean is subtracted from the 
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fractional Gaussian noise and then integrated over time.  
The signal profile  is divided into equally-sized 

windows with 50% overlap, which we term “boxes” [39] 
(Figure 1A). We define the  box of size  to be the signal 
profile at time points . In this box,  
can be represented by a linear model  where 

, where the estimates of the regression 
parameters denoted by  and  are obtained by the ordinary 
least squares criterion. The estimated trend is removed to form 
the residuals 

 (4) 
for .  

The standard deviation of  is computed for the  
box of length  to be 

 (5) 

where . Note that  theoretically equals 

zero because the intercept  is included in the linear model. 
For boxes of size , we denote the total number of boxes to be 

. The median of the standard deviations across all boxes 
 is computed to be . 

This process is performed for twenty logarithmically-spaced 
(base 10) box sizes  second (200 samples) to 

. The slope of the scatterplot for log  
as a function of  is estimated using least squares 
(Supplementary Figure 3). This sample slope is the DFA 
exponent, denoted , and it serves as a direct estimate of the 
Hurst exponent (H).   

D. Model selection to ensure linearity of DFA plots 
Because DFA will return an exponent value even when the 

resultant scatterplot is nonlinear, we ensured both simulated and 
human EEG data was best described by a linear model using the 
model selection technique outlined in [40].  

We tested four models with parameters :  
Linear:  
Polynomial (second-order):  
Polynomial (third-order):  
Exponential:  

Using the Bayesian information criterion (BIC), we 
determined which model best fit the empirical data. 
We tested three sets of data. First, we simulated data with H=0.7 
and a signal length of 240000 samples. We generated 1000 
independent realizations of these data and reported the 
percentage of realizations that best fit the given model. Second, 
we repeated the test with H=0.95 to ensure similar performance 
with stronger long-range temporal correlations. Third, we tested 
our Control dataset (n=21 subjects, minimum of 250 seconds of 
data during wakefulness). We performed this test in all 19 
channels and in all four frequency bands (except for one 
channel that was removed due to artifact), resulting in 1592 
observations. 
 

E. The Effect of Signal Length 
To estimate the variation in the DFA exponent  when 

analyzing time series of different lengths, we examined the 
difference between  measured for a short window of data and 

 measured for the entire signal length. We simulated time 
series that were at least  samples in total, the 
equivalent of twenty minutes of data sampled at 200 Hz. We 

 
Fig. 1. The signal profile (cumulative sum of the time series) divided into windows. (a) Windows used in DFA are of length M with 50% overlap and are 

termed “boxes”. Within each box, the linear trend is removed (dotted line) and the standard deviation of the detrended signal is obtained. (b) Blocks of data 
describing the moving block bootstrap and analysis of long-term EEG recordings. The length of the bootstrap block is BB (50 seconds) and the length of the 
global window is BG (1000 seconds). Ten blocks of length BB are randomly sampled from a global window of length BG to create a block-bootstrapped time 

series. Global windows were shifted 200 seconds (after artifact removal) in the long-term recordings. 
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performed DFA on the entire signal length and labeled this 
value as the “true” DFA exponent ( ). The signal was then 
divided into non-overlapping windows of one minute of data 
(  samples), and the DFA exponent was calculated for 
each one-minute segment ( ). We recorded the difference 
between  and . This process was repeated for windows 
increasing in size by one minute up to ten minutes. 
  To demonstrate this effect in human EEG data, we analyzed 
the sleeping portions of the Control dataset before artifact 
removal. The artifacts were left in the data to minimize the 
number of discontinuities in the signal. The analysis included 
patients from this dataset whose sleeping portions of data 
exceeded 14 minutes in length (n=10 subjects). The iterative 
process described for simulated data was repeated for these 
data. The DFA exponent calculated for the entire EEG time 
series was labeled  and the exponents for the shorter 
segments ( ) were compared with the  value. 

F. The Effect of Artifacts 
The detection and removal of artifacts is a common and often 

necessary practice in human EEG data analysis. We directly 
tested the effect of the presence of artifacts and the effect of 
artifact removal on the estimate of H. To investigate how 
artifacts affect , we first bandpass-filtered data during 
wakefulness, removed all artifacts, and measured the DFA 
exponent for each electrode in the Control dataset ( ). 
We compared this value to the DFA exponents measured in 
bandpass-filtered data with a percentage of artifact time periods 
removed randomly ( ). We chose different subsets of artifacts 
for twenty iterations, resulting in a distribution of  values for 
each percentage of artifacts removed. This process was repeated 
in increments of 10% of artifact time periods removed in all 
awake portions of the 21 subjects in all channels. 

The removal of artifacts creates discontinuities in the time 
series and this alters the temporal structure of the signal. We 
tested how removing small portions of data affects the estimate 
of H. This question was also investigated by [41], but the study 
did not quantify the effect of such discontinuities on the 
variance of the distribution of DFA exponents obtained, and 
their tests were only performed on simulated data. To 
investigate this in human EEG data, we removed epochs from 
sleep EEG data with the same temporal properties as artifacts, 
namely the artifact duration and inter-artifact duration. We 
performed this analysis on sleep EEG that was minimally 
contaminated by artifacts. We first calculated artifact and inter-
artifact duration from awake EEG in the Control dataset and 
then assigned simulated “artifact” times to the sleep EEG 
signal. The number of simulated artifacts was chosen according 
to a linear model of the number of artifacts per dataset length. 
We calculated the DFA exponent for the unaltered signal 
( ), and the DFA exponent for the time series with 
discontinuities due to a percentage of the simulated artifact time 
periods removed ( . 

G. The Effect of Discontinuities due to Bootstrapping 
Employing a moving block bootstrap will introduce 

discontinuities into the data because the process concatenates 

randomly sampled blocks of time series data (Figure 1B, BB) 
[26], [42], [43]. We wanted to quantify the effect of this type of 
discontinuity on the estimate of H using DFA. To do this, we 
first generated simulated time series as before, effectively 
twenty minutes in length. The DFA exponent was calculated for 
this original signal ( ). Discontinuities were introduced by 
randomly selecting one 50-second block of data from the time 
series, removing it from its original location, and adding it to 
the end of the time series, creating two discontinuities with one 
window translation. We chose a block length of 50 seconds to 
match the bootstrapping block length (BB, Figure 1B). This 
process was repeated for ten iterations of block translations, 
creating a new time series with twenty discontinuities. We 
measured the DFA exponent ( ) for the new time series with 
each iteration and recorded the difference between  and .  

We also tested the Control EEG dataset. We recorded the 
difference between the DFA exponent measured for the original 
time series ( ) and the exponent measured with each 
window translation ( ). We analyzed patients from this dataset 
with at least 500 seconds of continuous EEG during 
wakefulness (n=13 subjects). 

H. Bootstrap Analysis 
 We employed MBB-DFA by concatenating randomly 

selected blocks of data from the time series [26], [27], [42]. This 
method preserves the dependence structure in the time series by 
concatenating blocks of sufficient length to maintain correlation 
on a shorter time scale [43]. To build a bootstrap distribution in 
simulated data, we randomly selected ten blocks, each 50-
seconds (  samples) in length (BB, Figure 1B), from 
the 20-minute signal and concatenated the blocks to create a 
new time series that was 500 seconds long. DFA was performed 
on the new time series and the exponent ( ) was calculated for 
500 realizations. We then used MBB to obtain bootstrap 
distributions for the Long-Term and IS Subject datasets. All 
recordings in these datasets exceeded 1000 seconds in length 
(at least twenty 50-second windows).  

The DFA exponent and its confidence intervals were tracked 
over time in the Long-Term dataset. The time series was 
segmented into 79 overlapping “global” windows that were 
1000 seconds in length with 80% overlap (BG, Figure 1B, 
shift=200 seconds after artifact removal). Each global window 
of data was individually bootstrapped to calculate the 
distribution of DFA exponents ( ) for that window. In each 
global window, we randomly extracted ten 50-second blocks of 
data and concatenated the blocks to make a new 500-second 
signal as described above. We analyzed this signal with DFA, 
recorded , and repeated this process to create a distribution of 
500 values. The empirical distributions were obtained for all 79 
global windows.                                                                                              

III. RESULTS 

A. Model Selection in DFA 
We first confirmed that the resultant scatterplot from DFA 

was best fit with a linear model, indicating that the amplitude 
modulations of the time series can accurately be described by 
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power-law scaling. We observed that the two cases of simulated 
data (H=0.7 and H=0.95) resulted in nearly identical 
preferences toward the given models, with the linear model 
being chosen ~78% of the time (Supplementary Table 1). This 
indicates that the value of H does not alter the preferred model. 
For Control EEG, almost 60% of the data was best described by 
the linear model, with the next best model being preferred less 
than 20% of the time (Supplementary Table 1).  However, of 
the 40% of cases that did not prefer the linear model, the BIC 
values for the chosen model and the linear model were less than 
3% different in 75% of cases. Thus, we concluded from the 
model selection procedure that the linear model was appropriate 
for our EEG data and we used a linear model exclusively in our 
analyses.  

B. Variance of DFA exponents in simulated data 
We first measured the variation in the DFA algorithm output 

by generating simulated data with a known H and recording the 
estimate of H, represented by the DFA exponent ( ) over 500 
realizations. The mean of the distribution of  values was very 
similar to the true exponent H used to simulate the data 
(Supplementary Figure 4). The maximum standard deviation of 
the distributions was 0.024. Thus, the proposed estimator is 
approximately unbiased for the true exponent H. Histograms of 
selected distributions showed little deviation from normality 
(Supplementary Figure 4).  

C. The variance of the DFA estimate decreases for longer 
signal lengths 

There is greater uncertainty in DFA exponent estimation in 
shorter data segments because the smaller box sizes contain a 
smaller number of data points. We tested this effect using 
simulated data with H ranging from 0.50 to 0.99. We recorded 
the difference between the  for a selected segment of the time 
series and , and we aggregated the results from 50 independent 
realizations of simulated data (Figure 2A). The distributions 

indicate no trend in the median  value as a function of segment 
length, but the variance of the distribution is higher for shorter 
data segments than longer segments.   

The Control EEG data show bias in , with the largest effect 
in the lower frequency bands (Figure 2B). Similar to the 
simulation results (Figure 2A), the variance decreases with 
longer signal lengths. Though the EEG data interquartile range 
is only slightly larger than the simulated data, there are more 
outliers in the human EEG data. This is most likely due to the 
presence of artifacts.  

D. Artifacts increase the variance of the DFA estimate 
Data containing artifacts had higher  values than data in 

which artifacts had been removed ( ) (Figure 3A). For 
each permutation in which random artifact time periods were 
removed, the median  value is shown in Figure 3A (see 
Supplementary Figure 5 for all values). In contrast, the 
introduction of discontinuities with the same temporal 
properties as artifacts (Supplementary Figures 6 and 7) (to 
simulate artifact removal) did not bias the  distributions and 
had minimal effect on the variance of the distribution (Figure 
3B, full figure is shown in Supplementary Figure 8). The range 
of the  distribution due to the presence of 
artifacts (Figure 3A) is nearly an order of magnitude larger than 
the range of the  distribution (Figure 3B), indicating 
that it is better to remove artifacts from data prior to applying 
DFA, even if it introduces discontinuities.  

E. Discontinuities due to bootstrapping do not significantly 
increase DFA exponent variance 

Bootstrapping and the removal of artifacts will introduce 
discontinuities into the time series. We examined the effect of 
such discontinuities on the variance of the DFA exponent. In 
simulated data with varying numbers of added discontinuities, 
we found no trend in the median  value for any value of 
H (Figure 4A). Here  represents the DFA exponent with added 

 
Fig. 2. Boxplots showing the effect of data segment length on the DFA exponent. The horizontal black line denotes the median of the distribution and the 
bars indicate the interquartile range. The single lines above and below the bar indicate the upper and lower fence, respectively, and the circles beyond the 

fence denote outliers. (a) In simulated data, we varied both segment length and the value of H, which ranged from 0.50 to 0.99; boxplots for each value of H 
are placed adjacent to one another, in ascending order. The DFA exponent recorded for each segment is , and the exponent recorded for the original 20-

minute simulated data is . (b) In the Control EEG dataset, we compared  for each segment length to the value measured for the full signal ( ).  
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discontinuities and is the DFA exponent of the signal with no 
discontinuities. The standard deviation of the distribution, 
however, increased with the number of added discontinuities. 
This increase in standard deviation was greater for more 
positively correlated signals (Supplementary Figure 9). 

In Control EEG data, the addition of discontinuities by 
translating 50-second windows of data caused slight increases 
in the median  value and the variance of the distribution, and 
this trend was present in all frequency bands (Figure 4B, 
Supplementary Figure 10). However, we note that the variance 
of  in EEG data (Supplementary Figure 10) is only slightly 
bigger than the variance of  in simulated data (Supplementary 
Figure 9), indicating that these variations are on the same order 
as noise fluctuations. This slight bias may also be present 
because we used awake EEG data which contained artifacts.  

F. Bootstrapped distributions of DFA exponents in simulated 
data 

Applying MBB to time series generates independently 
sampled realizations of the time series (correlated within a time 
series; independent across different time series realizations) 
upon which distributions of a test statistic can be derived. We 
generated simulated data, block-bootstrapped the signal, and 
measured  for 500 iterations. We tested simulated data with 
values of H ranging from 0.50 to 0.95, in increments of 0.05, 
using twenty realizations for each value of H (Supplementary 
Figure 11). The median values of the bootstrapped  
distributions for individual realizations varied from one another 
despite being generated with the same Hurst exponent 
(Supplementary Figure 11). However, the variation in the 
median was comparable to the variation measured for 
independent simulated data realizations (Supplementary Figure 
6), so this variation was expected. When the DFA exponent 
deviations ( ) were aggregated over all twenty realizations 

of noise for all H values, the greatest difference occurred for the 
highest value of H (Supplementary Figure 12; for H=0.95, the 
positive bias was 0.023).  

G. DFA bootstrapping in long-term EEG data 
We used MBB and DFA to measure the statistical 

significance of changes in  in the Long-Term dataset (Figure 
5). This EEG dataset contained transitions in brain state over 
292.1 minutes: the subject was awake at the beginning of the 
recording, fell asleep at minute 56, woke up at minute 79, and 
then fell asleep again at minute 149 for the rest of the recording. 
We found significant differences between  during 
wakefulness and sleep in all frequency bands and in all channels 
except for channel C3 in the alpha band (Wilcoxon rank-sum 
test, corrected via Benjamini-Hochberg procedure [44], adj. 
p<0.05). 

H. DFA bootstrapping for within-subject comparison of pre- 
and post-treatment EEG data 

Lastly, in the IS Subject dataset, we compared  before 
treatment and after treatment in the delta, theta, and alpha 
frequency bands (Figure 6). For Subject A (blue), in all 
frequency bands and all channels, there was a statistically 
significant increase in the strength of correlations after 
successful treatment (Wilcoxon rank-sum, corrected via 
Benjamini-Hochberg procedure, adj. p<0.05). For Subject B 
(red), the distributions were significantly different in all 
channels except P3 in the delta band, O2 in the theta band, and 
P4, O1, and T3 in the alpha band (Wilcoxon rank-sum, 
corrected via Benjamini-Hochberg procedure, adj. p <0.05). 
Results for all channels are shown in Supplementary Figure 13. 

IV. DISCUSSION 
When applying DFA to neural data, one major limitation is 

 
Fig. 3. The effect of the presence and removal of artifacts on . (a) We compared Control EEG data (n=21) with all artifacts removed ( ) to data 

with only a subset of the artifact time periods removed. We randomly selected 10% of artifact time periods to be removed from the data for twenty iterations 
and recorded the median value for each channel. This was repeated for an increasing percentage of artifact time periods in 10% increments. The presence of 
artifacts increases the estimate of  and biases the distribution. (b) We compared continuous data during sleep (  to data containing discontinuities due 
to the removal of segments of data. The segment properties matched the temporal properties of artifacts in awake EEG. The removal of segments of data did 

not bias the distribution and minimally increased the variance. Representative data is shown from the theta frequency band in both panels. 
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that there is no framework to examine the variance of the Hurst 
exponent estimate. Our proposed approach integrates the 
moving block bootstrap with DFA to enable the calculation of 
confidence intervals for the Hurst exponent estimate in neural 
data. We showed that the use of short data segments increases 
the variability of the DFA exponent (Figure 2), suggesting the 
use of longer segments of data whenever possible. We found 
that the presence of artifacts positively biases  (Figure 3A). 
This effect is successfully mitigated by removal of artifactual 
segments, even though this introduces additional 
discontinuities (Figure 3B). We also found that the introduction 
of discontinuities due to the bootstrap process does not increase 
the variance more than what can be expected from noise 
fluctuations (Figure 4B and Supplementary Figure 4).  This 
allows techniques like DFA to be successfully applied to human 
neural data. When analyzing EEG data, MBB-DFA enabled 
calculation of a time-varying measurement of , and we found 
significant differences between wake and sleep (Figure 5). For 
application to a clinical setting, we show that our method can 
be used to compare pre-treatment and post-treatment EEG data 
in subjects with infantile spasms (Figure 6). This demonstrates 
the potential impact of our approach, as single-subject 
comparisons were not possible with previously available 
methods. 

A. Practical considerations for implementation of MBB and 
DFA on neural data 

Selection of DFA window size. Although there are many 
ways to measure temporal dependence in neural time series 
[45]–[50], we chose to use DFA to estimate the Hurst parameter 
due to its widespread application in current neuroscience 
literature [6], [9], [13], [18], [19]. The method was originally 
developed to accurately estimate the Hurst exponent despite 
nonstationarities in the data, supporting its use as the preferred 
method to analyze temporal structure [2], [39], [51]. However, 

some groups have heavily criticized DFA in this regard in 
recent years, showing circumstances where certain 
nonstationarities and parameter selection greatly influenced the 
accuracy of the measure [52], [53]. For example, [53] showed 
that the resultant DFA plot will become nonlinear if the 
minimum window size is too small. Likewise, if window sizes 
are too long, the resultant plot may have “cross-over” points, 
requiring special analysis techniques [41], [54]. Additionally, 
certain nonstationarities such as periodicity and trends have 
been shown to reduce the accuracy of the algorithm [55], [56]. 

To address the issue of appropriately-sized windows for DFA 
(M, Figure 1A), we chose our smallest window size to be 1 
second (200 samples). This exceeds the window size in which 
nonlinearity in the DFA plot occurs [53]. We set our largest 
window size to 1/10 of the signal length [39]. Earlier 
comparison with the autocorrelation function of the amplitude 
envelope in these data showed that correlations were significant 
up to 100 seconds [57]. Our maximum window size was on the 
order of 120 seconds for both the simulated data and the longest 
control datasets.  

Time series length. We showed that the variance of the 
Hurst exponent estimate was a function of the length of the time 
series being analyzed. While some DFA studies analyze 
segments of data that are only several seconds long [18], [58], 
we showed that the most reliable estimates of  are achieved 
for segments of data that were several minutes long (Figure 2). 
This is not surprising since longer time segments have more 
time points and hence will result in lower variances in the Hurst 
exponent estimator. We note that estimates of H using short 
time segments are not necessarily incorrect; they may simply 
be describing the temporal structure of the signal more locally 
and are more subject to variation. However, because the 
variance in the measure is greater with shorter segments of data, 
more subjects or trials may be necessary to demonstrate a 
significant result. These results also highlight the specific value 

 
Fig. 4. The effect of bootstrapping discontinuities on . (a) We compared the DFA exponent measured for simulated data ( ) to data with an increasing 

number of windows translated ( ), creating discontinuities in the data similar to those created during the bootstrapping process. The variance of the 
distribution increases slightly as more discontinuities are created. (b) In the Control EEG dataset (n=13 subjects), we measured differences between  values 

for EEG time series with translated windows compared to the DFA exponent measured using the original continuous EEG signal ( ). The median and 
interquartile range of the distribution slightly increased as a function of the number of introduced discontinuities in the time series. Representative data is 

shown from the theta frequency band. 
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of the MBB method. For example, we can compare the 
distribution of DFA exponents acquired by simply cutting the 
time series into smaller segments (Figure 2A) to the distribution 
of DFA exponents resulting from MBB (Supplementary Figure 
11B). The bootstrapped values were closer to the value for the 
original signal than those measured for shorter segments, 
showing that MBB provided a better estimate of the Hurst 
exponent without sacrificing statistical strength. 

We found that the variation in stabilized with 
segments of EEG data five to eight minutes long, defining a 
minimum length to ensure the best attainable estimate of the 
Hurst exponent. This result informed our decision to use global 
windows (BG) of 1000 seconds; because employing a block-
bootstrap involved calculating  for 500-second segments (8.33 
minutes) of block shuffled data, this choice of global window 
size ensured that the bootstrapped data length still exceeded the 
minimum data length of five to eight minutes.  

Parameters for moving block bootstrap. We chose a length 
of 50 seconds for BB because a sufficient binomial coefficient 
was needed to perform 500 iterations of random block 
sampling. In the simulations, we randomly sampled ten 50-
second blocks of data from the 1200 seconds of data (24 blocks, 
each 50 seconds long). In the long-term datasets, we chose ten 
50-second blocks of data from the 1000 seconds of data in the 
global window BG (20 blocks, each 50 seconds long). These 
parameters resulted in binomial coefficients of 1961256 and 
184756, respectively, exceeding the coefficients needed for 500 
iterations of sampling (nCk= ). We note that the 
differences between DFA exponent distributions generated for 
1200-second datasets and 1000-second datasets were negligible 
(data not shown). We also note that including ten 50-second 
blocks means that the largest box size included in the DFA 
analysis is 50 seconds. This is necessary because the long-range 
temporal structure beyond this box size has been destroyed.  

Discontinuities and Artifacts. Artifact removal improves 
confidence in the DFA estimate because it removes data of non-

neural origin, but the process introduces discontinuities into the 
data. We showed that the presence of artifacts positively biased 
the median value of the DFA exponent distribution (Figure 3A), 
while discontinuities due to artifact removal had minimal 
impact on the estimate (Figure 3B). This substantiates the 
practice of removing artifacts prior to any DFA analysis. 
However, ensuring enough data remains for robust estimates of 
the DFA exponent is imperative. Alternative artifact rejection 
strategies like Independent Components Analysis may provide 
similar results while reducing the number of discontinuities in 
the time series [15].  

Lastly, we showed that discontinuities in the data due to 
bootstrapping do not increase the DFA exponent variance more 
than that seen from pure noise fluctuation (Figure 4B, 
Supplementary Figure 4). Previous studies showed that the 
DFA exponent is heavily affected by the introduction of 
discontinuities if the signals are anti-correlated (0<H<0.5) [41]. 
However, our results coincided with their findings that the 
exponent estimation remains largely unchanged in the presence 
of discontinuities in positively-correlated signals [41]. In 
previous literature, neural signals have unanimously been 
described as positively correlated [6], [39].  

B. Applications of MBB and DFA 
We showed that MBB and DFA can be used to track changes 

in the temporal structure of the EEG in a healthy infant during 
a sleep-wake cycle (Figure 5). The time-varying distributions 
of DFA exponents showed the largest differences between 
wakefulness and sleep in the delta frequency band. The results 
shown here are related to the work in [59], in which time-
varying DFA exponents are measured via Kalman filtering and 
covariance calculation.  

We additionally showed that these techniques could be used 
clinically to compare pre- and post-treatment data in two 
subjects with infantile spasms (Figure 6). The two subjects were 
chosen as examples to show the utility of the MBB-DFA 
method. In one subject, the change in  is large, while the other 

 
Fig. 5. Bootstrapped distributions reveal differences between wake and 

sleep in a healthy human subject in EEG channels O1 and O2. The mean 
of the bootstrapped distribution is the dark solid line of the respective 

color for each frequency band. The translucent colored region represents 
the 95% confidence interval. Periods of sleep are marked with a grey 

background.  

 
Fig. 6. Bootstrapped distributions of  for pre- (denoted 1) and post-

treatment (denoted 2) EEG data in subjects with infantile spasms. Blue 
boxplots represent Subject A, a subject that responded to treatment. Red 
boxplots represent Subject B, a subject that did not respond to treatment.  

Results are shown for all frequency bands in EEG channel P3. All 
channels are shown in Supplementary Figure 13. 
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shows little change in  after treatment. Our previous work 
suggests that the larger increase in  in the responding subject 
may be due to changes in the neuronal network associated with 
treatment response. In that study, we showed that the DFA 
exponent is significantly lower in infantile spasms patients 
compared to healthy controls, and the value normalizes with 
successful treatment [14]. However, this effect on DFA 
exponent distributions calculated with MBB will need to be 
validated on a larger dataset.  

Other groups have used DFA in clinical applications to 
investigate EEG changes when a patient experiences a stroke 
[18] and for neonatal background differentiation [19]. In an 
ECoG study in epilepsy patients, long-range temporal 
correlations measured with DFA were stronger when the 
electrodes were near the epileptogenic zone [12]. These studies 
show that DFA can provide useful information in analysis of 
group-wise statistics.  

However, DFA has not often been used to describe within-
subject changes. Although some groups have investigated 
properties of the DFA algorithm to assess local changes in the 
time series [60], these studies focus on assessing changes in 
temporal structure at the smallest time scales possible [19], 
[61]. In contrast, our study focused on filtering out local 
variations in the temporal structure to make conclusions about 
lasting, global changes in the strength of correlations in the time 
series, enabling tracking of slow changes in brain state or in 
response to treatment. 

A moving-block bootstrap technique has been implemented 
alongside DFA before, but has not yet been applied to human 
neural data [29]. The variation of the DFA exponents in 
bootstrapped distributions of human data bore a strong 
resemblance to our results for simulated data. We hypothesize 
this is due to the long window sizes being analyzed: though we 
know brain activity is changing on a millisecond time scale, the 
average correlation strength is consistent when analyzed over 
hundreds of seconds. We hypothesize this to be crucial in the 
analysis of brain state changes, such as wake and sleep staging, 
as well as comparing pathological and healthy activity.  

Assessing changes in the Hurst exponent over time has the 
potential for significant impact in the fields of cognition, brain 
stimulation, and medicine. This impact can be broadened 
further with the natural extension to a multivariate moving 
block bootstrap, enabling analysis of spatially-varying DFA 
exponents with confidence intervals. These methods can be 
broadly applied to longitudinal neurophysiological data, 
shedding light on cognitive processes and progression of mental 
and neurological diseases and their treatments. More 
specifically, when used as a measurement of the disease state in 
patients with epilepsy, an increase in the DFA exponent for a 
single patient over time can function as an objective biomarker 
of treatment response [14]. This could guide clinical practice, 
inform seizure medication selection, and ultimately lead to 
more effective and expeditious treatment. Similarly, the 
assessment of DFA exponents from single subjects over time 
could describe disease progression in Alzheimer’s [62] or 
depression [63]. The ability to examine the statistical 
significance of within-subject differences allows for an 

expanded view of DFA and its use in human neural data. 
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SUPPLEMENTARY FIGURES: 

 

 

 

 

Supp. Fig. 1. Relationship between simulated EEG time series and the signal autocorrelation. (a) Raw simulated EEG time series generated with H=0.55 

(black), 0.65 (red), 0.75 (blue), 0.85 (green), and 0.95 (magenta). We highlight that the time series display larger migrations from the mean in more 

positively correlated signals.  (b) Normalized autocorrelation of each time series.  

 

 

Supp. Fig. 2. The effect of filtering on scalp EEG time series. (a) Raw scalp EEG time series from control subject. (b) EEG data filtered into the delta 

(1-4 Hz), theta (4-7 Hz), alpha (8-12 Hz), and beta (13-30 Hz) frequency bands, from bottom to top, respectively.  



 

 

 

 

 

Supp. Fig. 3. Example output of detrended fluctuation analysis (DFA). When the log of the median fluctuation (the standard deviation of the detrended 

signal profile) is plotted as a function of the log of the window size, a linear result may indicate power-law scaling of the autocorrelation function. The 

slope of the line (𝛼) is an estimate of H for the time series.  

 

 

Supp. Fig. 4. Comparison of the distribution of 𝛼 values to the true H value used to create simulated data. (a) The circles indicate the mean of the 

distribution of 𝛼 values and the line above and below indicate one standard deviation. (b) Histograms of selected distributions of 𝛼 values as a function 

of H.  

 



 

 

 

 

 

 

 

 

 

 

 

Supp. Fig. 5. Effect of artifact removal for all twenty iterations in all channels for 21 subjects in the Control dataset. Deviations in DFA exponents are 

shown for the (a) delta, (b) theta, (c) alpha, and (d) beta frequency bands. 



 

 

 

 

 

 

 

Supp. Fig. 6. Temporal properties of artifact time periods in awake human EEG. (A) Amount of time from beginning to end of artifact. (B) Time 

between successive artifactual time periods. 

 

 

Supp. Fig. 7. Linear model describing the number of artifacts present in awake EEG data as a function of dataset length.  

 



 

 

 

 

 

 

 

 

 

 

 

 

Supp. Fig. 8. Difference in the DFA exponent measured for the time series with “artifact” time periods removed (𝛼), and the DFA exponent for the 

original sleep EEG time series (𝛼𝑓𝑢𝑙𝑙). Data shown for (A) delta, (B) theta, (C) alpha, and (D) beta frequency band.  



 

 

Supp. Fig. 9. The effect of time series discontinuities on 𝛼. The lines indicate standard deviations of 𝛼 − 𝛼̂ distributions for varying values of H. 

Differences between 𝛼 values measured for twenty-minute simulated time series with translated windows compared to the DFA exponent measured 

using the original twenty-minute signal (𝛼̂). 

 

Supp. Fig. 10. Difference in 𝛼, the DFA exponent measured for the time series with “artifact” time periods removed, and 𝛼𝑓𝑢𝑙𝑙, the DFA exponent for 

the original sleep EEG time series. Data shown for (A) delta, (B) theta, (C) alpha, and (D) beta frequency band.  



 

 

 

 

 

Supp. Fig. 11. Applying DFA to iteratively bootstrapped time series generates a distribution of 𝛼 values for the signal. (a) The distributions of 𝛼 for 20 

independent realizations of fBm generated with H = 0.75. (b) Relative DFA exponents (𝛼 − 𝛼̂) for the data shown in (a). 

 

 

Supp. Fig. 12. Deviations in DFA exponents (𝛼 − 𝛼̂) over all realizations for tested H values.  

 



 

 

 

 

Supp. Fig. 13. Distributions of 𝛼 for all channels in pre- and post-treatment data from Subjects A and B. (a) Subject A, delta frequency band, (b) Subject 

B, delta frequency band, (c) Subject A, theta frequency band, (d) Subject B, theta frequency band, (e) Subject A, alpha frequency band, and (f) Subject 

B, alpha frequency band. 

 



SUPPLEMENTARY TABLES: 

 

 Simulated 

data 

(H=0.7) 

Simulated 

data 

(H=0.95) 

Control 

data 

Linear 77.4% 79.1% 59.8% 

Polynomial, 

2nd order 

12.2% 10.9% 16.9% 

Polynomial, 

3rd order 

2.3% 2.0% 5.6% 

Exponential 8.1% 8.0% 17.7% 

 


