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Summary 
High frequency oscillations (HFOs) in intracranial EEG are a promising biomarker of the 

epileptogenic zone and tool for surgical planning. Many studies have shown that a high rate of 

HFOs (number per minute) is correlated to the seizure onset zone, and complete removal of 

HFO-generating brain regions has been associated with seizure free outcome after surgery. In 

order to use HFOs as a biomarker, these transient events must first be detected in 

electrophysiological data. Because visual detection of HFOs is time consuming and suffers from 

low interrater reliability, many automated algorithms have been developed, and they are 

increasingly being used for such studies. However, there is very little guidance on how to select 

an algorithm, implement it in a clinical setting, and validate the performance. Therefore, we 

aim to review automated HFO detection algorithms, focusing on conceptual similarities and 
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differences between them. We summarize the standard steps for data pre-processing, as well 

as post-processing strategies for rejection of false positive detections. We also detail four 

methods for algorithm testing and validation, and we describe the specific goal achieved by 

each one. We briefly review direct comparisons of automated algorithms applied to the same 

dataset, emphasizing the importance of optimizing detection parameters. Then, to assess 

trends in the use of automated algorithms and their potential for use in clinical studies, we 

review evidence for the relationship between automatically detected HFOs and surgical 

outcome. We conclude with practical recommendations and propose standards for the 

selection, implementation, and validation of automated HFO detection algorithms. 
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Key points 
• This article reviews automated HFO detection algorithms and their implementation in clinical 

studies comparing HFOs to surgical outcome 

• Initial detection of HFOs relies on a wide variety of energy-based methods, whose detection 

results will be highly overlapping 

• It is crucial to optimize detection parameters, remove artifacts from the data, and reject false 

positive detections 

• Automatic detection has been used to identify significant correlations between removal of HFO-

generating regions and surgical outcome 

• Implementation and optimization of automatic detection should be standardized to facilitate 

identification of trends across studies 

  



1. Introduction 
Epilepsy is one of the most common neurological disorders, affecting more than 65 million 

people worldwide.1 Roughly one third of patients with epilepsy have poorly controlled seizures 

despite optimal treatment with medication.2 In such cases, surgical resection of the 

epileptogenic zone (EZ) is an alternative and effective treatment.3, 4 Post-surgical seizure 

freedom depends on the accurate localization of the EZ, but there are currently no validated 

biomarkers of the EZ.5, 6 The present gold standard for epilepsy surgery is removal of the seizure 

onset zone (SOZ), defined as the brain area where seizure activity is first seen. However, the 

SOZ is difficult to localize and does not delineate the full extent of the EZ. Thus, in addition to 

the SOZ, other electrophysiological and non-EEG biomarkers are needed to help localize the EZ. 

High frequency oscillations (HFOs) have been studied extensively in the past two decades as a 

potential biomarker of the EZ.7 HFOs are transient electrographic events consisting of multiple 

sinusoid-like waves in the 80 to 500Hz frequency range that clearly stand out from the 

background (Figure 1).8 To analyze HFOs, high sampling rate data must be collected, which 

requires the use of a specialized amplifier.9 HFOs can be measured with both intracranial EEG 

and scalp EEG,8 although frequent artifacts (signals of non-neural origin) and the low power 

associated with high frequency activity, especially in scalp recordings, make accurate detection 

a challenge.9 After the data are recorded, interictal HFOs are detected in the signal from each 

channel using visual or automatic detection, and the rates (number per minute per channel) are 

calculated. Numerous studies show that the HFO rate is higher inside than outside the SOZ,10-16 

and there is good evidence that removal of brain regions exhibiting a high rate of HFOs 

correlates with good surgical outcome.17-19 These data suggest that regions containing channels 

with high HFO rates are potential surgical targets. 

However, the precise cellular mechanism by which HFOs are generated remains unknown, 

which has prevented establishment of a consensus on the features (e.g., amplitude, duration, 

frequency, and number of cycles) used to describe an HFO. Therefore, current studies rely on 

an empirical definition derived from visual observation.20, 21 Different research groups choose 

different definitions, e.g., a criterion of three or more oscillations vs. four or more oscillations in 

each HFO. Moreover, physiological HFOs in the ripple band, such as those occurring in the 



hippocampus,22 have features that overlap with those of pathological HFOs.23-25 This makes 

both visual and automatic detection problematic. 

For HFO detection, the earliest studies relied on visual methods using one or more experienced 

reviewers.26, 27 However, this is a time-consuming process, especially when analyzing more than 

a few minutes of data. Also, the inter-reviewer reliability is often inadequate.28-30 This suggests 

the need for fast and accurate automatic detection algorithms.  There are many published 

automatic detection algorithms, but almost no recommendations on when one algorithm 

should be chosen over the others and how to select parameters for implementation. Directly 

comparing different algorithms is non-trivial because it is rare for multiple algorithms to be 

applied to the same dataset, and the performance of each algorithm depends on the choice of 

parameters. Here we provide a comprehensive review of current automated algorithms. First, 

we compare and contrast the methods, then we identify trends in the use of automated 

detection in clinical studies for SOZ/EZ localization. Lastly, we suggest standards for the 

development and implementation of automated detectors. 

2. Automated detection of HFOs 

2.1 Data acquisition and preprocessing 
Intracranial EEG (iEEG) data for clinical HFO research is commonly recorded using standard 

macroelectrode contacts on grid and strip electrocorticogram (ECoG) electrodes, depth 

electrodes, and stereotactic EEG (SEEG). These electrodes have surface areas ranging from 

roughly 1 to 10mm2.31 The data are typically re-referenced offline to a bipolar montage, and 

visual review is used to reject channels containing significant artifacts.32, 33 For HFO analysis, the 

acquired iEEG data is bandpass filtered to restrict the range of frequencies, predominantly 

using finite impulse response filters with forward and reverse filtering to minimize phase 

distortion.34 Based on early results, research has primarily focused on two frequency bands: the 

ripple band (80-250Hz) and the fast ripple band (250-500Hz).26 Whitening, or spectral 

equalization, can be done to compensate for the fact that EEG power decreases as frequency 

increases.30, 35-37 Data for HFO analysis are normally acquired at 2000Hz or more using 

specialized amplifiers. However, some studies have used standard clinical sampling rates to 



study oscillations in the gamma band, venturing away from the conventional definition of 

HFOs.30, 38 

HFOs occur with the highest probability during non-rapid eye movement (NREM) sleep,14 and 

muscle artifacts are less frequent during these periods; hence, NREM is most commonly used 

for detection of HFOs. In studies where scalp EEG is unavailable, NREM sleep is identified via 

increased power in low frequency bands39, 40 or additional EOG and EMG electrodes.17, 41 

However, some studies do not sleep stage because scalp EEG is not a standard procedure for 

long-term intracranial monitoring.42 HFOs are typically detected in short epochs of data, 

ranging from 1 to 10 mins, but recent evidence suggests that longer epochs may be necessary.43  

Although HFOs have been identified in both ictal and interictal EEG, HFO studies predominantly 

use interictal data, taken a few hours before and after seizures.  The use of interictal data 

negates the need to wait for rare and unpredictable seizures, and it reduces the amount of high 

sampling rate data that must be recorded and stored. Moreover, data from Zijlmans et al. 

suggested that HFOs occur in the same brain regions during ictal and interictal periods.44 

Residual anesthesia and anti-seizure medications can suppress HFO activity,45, 46 so data is 

typically collected on or after the second night of recording. 

2.2 Automated algorithms for initial event detection 
A critical step in the detection of HFOs is separating them from the background activity. For this 

initial detection step, existing algorithms use energy-based metrics (Table 1). Among the many 

energy measures that exist, the most commonly used are root-mean-square (RMS) 

amplitude,32, 33, 42, 47-50 power,51, 52 line length,11, 30, 51, 53 and Hilbert transform envelope.54, 55 

Other methods include a median filter56 and amplitude of the local peaks in the filtered data.40, 

57 A multi-channel detection method based on RMS and line length was also proposed to 

account for simultaneous measurement of multiple adjacent electrodes and eliminate the need 

for manual channel selection.58 Several of the energy-based metrics (RMS, power, line length, 

and median filter) are calculated for short windows of filtered data with or without overlap, 

which adds an additional parameter. The others (Hilbert envelope, amplitude of local peaks) 

can be calculated without windowing the data. 



After calculating the energy, events that exceed a pre-determined threshold for a minimum 

duration are identified as potential HFOs. The threshold is typically a number of standard 

deviations above the mean value or a non-parametric threshold based on the cumulative 

distribution function, e.g., events with an energy above the 99th percentile. The threshold can 

be set for the entire duration of the data or for short epochs of data, which accounts for local 

modulations in the energy of the background activity. These detectors may further require a 

minimum number of oscillatory cycles for events to qualify as HFOs. Events that are separated 

by less than a minimum time period are often concatenated to form one single event. The 

parameters can be adjusted to change the sensitivity of the detector, but a highly sensitive 

detector may be preferred if it is paired with post-processing steps to reject false positives (see 

Section 2.3). While there are exceptions, the events detected by these methods will have 

significant overlap because the different energy metrics are highly correlated (Figure 2). Energy-

based methods are easy to relate to visual detection and have a low barrier to implementation, 

but accurate performance is highly dependent on optimization of the detection parameters. 

2.3 Post processing and rejection of false positives 
Filtering of a sharp transient in the EEG will produce a burst of high frequency activity, which 

may be falsely detected as an HFO.34 Signals of non-neural origin, such as  muscle activity and 

harmonics of electrical line noise, can also cause false positive detections.59 For this reason, 

many algorithms include steps for rejection of false positives after the initial detection (Table 

1). While this increases the specificity of the detector, it also introduces additional parameters 

that must be optimized. Visual rejection is commonly used, especially coupled with low 

sensitivity detectors. Automated methods have also been developed, as visual marking is not 

feasible when the number of detected events is high. These include techniques based on the 

time domain signal, the time-frequency decomposition, and machine learning: 

2.3.1 Time domain techniques 

Detected events may be rejected if the duration exceeds a threshold,56 indicating possible 

contributions of muscle activity. Special methods for detecting fast DC-shifts in the raw data 

and artifacts in the common average (indicating that the event is too spatially widespread to be 



an HFO) have been proposed.42 Restricting the number of zero crossings in the raw data has 

also been used as a means of rejecting false HFOs.56 

2.3.2 Time-Frequency decomposition  

Time-frequency (TF) analysis allows visualization of a signal’s power spectrum as a function of 

time. In a TF plot, true HFOs are thought to be represented by an island of increased power at 

high frequencies, with the high power occurring within a distinct band (Figure 3A,B), while 

sharp, artifactual transients exhibit high power across all frequencies (Figure 3C).34 Moreover, 

an HFO superimposed on a spike may have a power spectrum peaking at both low and high 

frequencies (Figure 3D).34, 60  Application of a bandpass filter to the data, which is commonly 

the first step of HFO detection, is like taking a smaller horizontal slice of the TF plot. When this 

is done, all the examples in Figure 3 (including the artifact) will produce HFO-like events. Thus, 

examination of the TF plot can be used to distinguish real HFOs from false positive detections, 

which is often not possible by looking at the bandpass filtered data. However, the TF 

decomposition is computationally intensive, so these methods are not used for initial detection. 

Rather, they are applied after an energy-based detector with high sensitivity. 

Common methods to calculate the time-frequency decomposition include the Stockwell 

transform,61, 62 Morse wavelet,60 short-time Fourier Transform,52, 56 discrete wavelet 

transform,52 Gabor wavelet,63, 64 and Morlet wavelet.54, 65-70 TF analysis has been used for visual 

confirmation of automatically detected HFOs,60, 67, 68 and this process has also been successfully 

automated.52, 54-56, 62, 70 These automated methods commonly apply a threshold to the ratio 

between a predetermined high frequency power and low frequency power.52, 55 TF 

decomposition is also used for analysis of HFO features, which can shed light on their 

morphology.63-66 

2.3.3 Machine learning techniques  

Generally, machine learning methods involve extracting features of detected HFOs from a 

training set of data (generally a certain percentage of the data set) and using those features for 

classification. Initial detection is commonly done using a high sensitivity detector, such as the 

RMS detector.71-73 There are two subcategories of machine learning. The first is supervised 

machine learning techniques that use labelled data, e.g., visually marked HFOs and background 



segments, to train the algorithm; the optimized parameters are then used on the testing 

dataset. These techniques have been used to separate true HFOs from false HFOs,51 classify 

HFOs as ictal or non-ictal,71 and distinguish between resected and non-resected tissue.13 

Methods include neural networks,51 logistic regression and K-nearest neighbors,71 and support 

vector machines.13, 71 In contrast, the second subcategory is unsupervised machine learning 

techniques that do not require visually marked data to train the algorithms. The algorithms 

cluster the initial detections based on their similarity to one another, either using features or 

the event itself. The optimal number of clusters can be chosen using various techniques.16, 32, 72, 

73 Based on the characteristics of their members, clusters can then be empirically interpreted as 

containing ripples, fast ripples, or false HFOs due to artifacts or sharp transients, thus improving 

detector specificity32, 72, 73 or aiding classification of SOZ and non-SOZ channels.16 All of these 

studies used Gaussian mixture models, sometimes in combination with other clustering 

algorithms.  

2.4 Testing and validation of automated algorithms 
After choosing methods for initial detection and rejection of false positives, the performance of 

an automated algorithm can be tested using an independent dataset. This procedure can be 

done using event-level validation techniques, clinical validation techniques, or a combination of 

both. 

Event-level validation techniques can be used to verify the characteristics of detected events 

relative to visual detection or inspection: 

(1) Comparison to visual detection. The most frequently used test for automated algorithms is 

to compare the automatically detected HFOs with those visually marked by two or more 

reviewers. This enables the calculation of detector sensitivity and specificity, and the goal is to 

achieve high overlap between automatic and visual detection, with the visually marked events 

treated as the ground truth. However, this procedure is time and labor intensive, and subject to 

the investigator bias inherent in visual detection.28, 29  

(2) Verification via visual review. An alternative, when the dataset is very large, is to visually 

examine a random sample of the detected events, e.g., 2000 out of 1.5 million events 42 or 



three out of 11 patients.51 It is then possible to estimate the percentage of automatically 

detected events that resemble true HFOs or are false positives due to the filtering of artifacts or 

sharp transients. Here, the goal is to ensure that the number of automatic false positive 

detections is sufficiently low, and this procedure is less time intensive than comparison to visual 

detection. However, this again assumes that visual detection is the ground truth, despite its 

drawbacks. It is also not possible to know if the detector missed events (false negatives) or 

whether the detections are a representative sample of true HFOs. 

Clinical validation techniques can be used to verify that the events detected by the automated 

algorithm are a biomarker of epilepsy: 

(1) Comparison to SOZ. Detectors can be validated by identifying the channels with high ripple 

and/or fast ripple rates and comparing them with the clinically determined SOZ. This strategy is 

aimed at measuring the utility of automatically detected HFOs as an interictal biomarker of the 

SOZ. If the detection algorithm has been previously tested using visual detection or visual 

review, this serves as further validation of both the algorithm and the value of visually marked 

HFOs. If the algorithm has not undergone prior testing, there is no guarantee that the 

automatically detected events would have been visually marked. In this case, if significant 

differences between SOZ and non-SOZ channels is demonstrated, basic characteristics of the 

detected events (duration, frequency, amplitude, etc.) should be analyzed. 

(2) Comparison to surgical outcome. Lastly, a detector can be validated by comparing its output, 

e.g., the HFO rate for each electrode, to the resected volume and seizure outcome after 

surgery. In these studies, it is common to analyze the R or FR “resection ratio,” which denotes 

the percentage of brain regions exhibiting high HFO rates that were resected. In theory, 

patients with high resection ratios should have good surgical outcome. Here, the goal is to 

validate HFOs as a biomarker of the EZ. This form of validation has more clinical utility than 

comparison to the SOZ, as surgical removal of the SOZ does not always result in seizure 

freedom. However, there are significant limitations to interpreting outcome. Tissue beyond the 

HFO-generating regions is often resected, which limits interpretation of seizure free outcomes, 

and if the seizures persist, this may be because some HFO-generating regions were not 



sampled. These studies also generally require more subjects, with integration of imaging and 

electrophysiological data and collection of long-term follow-up data. As with comparison to the 

SOZ, the features of automatically detected events will depend on whether the detector was 

previously tested using visual detection or review. 

2.5. Parameter optimization 

The automated methods in Table 1 involve the use of multiple inter-dependent parameters for 

initial detection and rejection of false positive detections. Changing these parameters can 

greatly affect the output of the detector.74 Therefore, optimizing detector parameters is an 

important step in the implementation of an automatic detector. In order to achieve sufficient 

sensitivity and specificity, the parameters for initial event detection (Section 2.2) and rejection 

of false positive detections (Section 2.3) must be adjusted for each data set,74 for each 

subject,41 or for each channel of iEEG.57 In that sense, these detectors are not fully automated. 

To determine the optimum parameters, the steps described in this section are applied to a 

randomly selected subset of data13, 47 or patients,51, 55 sweeping through parameter values. The 

remaining, usually larger, subset is used for testing the detector performance. A hold-one-out 

method can also be used to select data for optimization and testing, especially when limited 

data are available.42 During training, automatically detected events are visually inspected, or 

they are compared against visually marked events, the visually determined SOZ, or clinical 

outcome (see Section 2.4). The parameter set that gives the best results is then applied to the 

testing dataset to measure detector performance. Alternatively, it has been suggested that 

varying the detection parameters over a small range can be used to test the robustness of SOZ 

localization; if a channel has a high HFO rate for multiple sets of parameters, this suggests that 

the HFOs are easily separated from the background and increases confidence in classifying the 

channel as SOZ.53 

It is important to note that the parameters used for automatic detection are inter-dependent. 

For example, if the energy threshold is decreased, the duration of the detected events will 

increase. Naturally, optimization becomes increasingly difficult when there are many inter-



dependent parameters. Therefore, it can be advantageous to use a detector that was designed 

to minimize the number of parameters, e.g., Charupanit et al.57 

3. Comparison of automated detectors 
Automated detectors are often validated on novel data sets, which are recorded at different 

centers with electrodes of different sizes, and detection can be implemented with varying 

parameters and frequency ranges. Therefore, directly comparing performance metrics of 

different detectors is challenging. Detectors can only be accurately compared when they are 

tested on the same dataset and the parameters for each detector are optimized for that 

dataset. Overall, we identified eight studies that compared their new detector to existing 

detectors on the same data set. 

In particular, two studies compared detectors after implementing independent optimization 

procedures for the parameters of each detector. First, Zelmann, Mari, Jacobs74 compared the 

MNI detector to the line length (LL)30 and RMS detectors33 on the same dataset used to 

optimize parameters for the MNI detector. In addition to using the parameters from the 

original papers for detection, the authors also optimized the parameters using a subset of the 

data and compared performance using the optimum values. When the original parameter 

values were used, the detectors performed very poorly relative to the performance stated in 

the original papers, but significant improvement was seen when using the optimized 

parameters. This emphasizes the importance of parameter optimization for detector 

performance. With optimum parameters, the MNI detector fared marginally better than the 

other two. However, the LL detector was originally made for a frequency range of 0.1 to 100Hz, 

while it was tested here for 100-500Hz. Second, Charupanit, Lopour 57 compared their detector 

to the RMS detector using the same dataset. The two threshold selection methods described in 

the paper (iterative and non-iterative) and the RMS detector performed comparably when 

optimization was done for all channels. The iterative method performed significantly better in a 

rigorous cross-validation test, where optimization was done on a subset of channels and testing 

was done across the remaining channels. 



Gardner, Worrell, Marsh30 compared their LL detector against the RMS detector, modifying it to 

suit the clinical dataset. The LL detector performed significantly better, but the parameters of 

the RMS detector were not optimized and it was not originally designed for use in the 0.1 to 

100Hz frequency range. Cimbalnik, Hewitt, Worrell48 compared their CS algorithm to the RMS 

and LL detector in a dataset including human, rodent, and canine recordings. They reported 

superior detection accuracy and temporal localization using their algorithm. Burnos, Hilfiker, 

Surucu55 also compared their detector to the RMS and LL detector; in two patients, the 

detectors performed equally, while in the other four patients their detector did considerably 

better. Dumpelmann, Jacobs, Kerber 51 compared theirs to the LL detector, and ROC analysis 

showed that theirs was superior. Ren, Yan, Yu 40 compared their detector to the MNI, RMS, LL 

and Hilbert detectors. For both ripples and FRs their algorithm had significantly higher 

sensitivity and specificity. Similarly, Wu, Wan, Ding 32 found that their proposed detector 

performed better than five existing detectors. However, in all of these comparisons, the 

existing detectors generally performed worse than they did in the original publication. This may 

be due to three important limitations. First, the detector parameters were not always 

optimized prior to applying them to the new dataset. Second, detectors were sometimes tested 

on datasets or in frequency ranges that were entirely different from the ones they were 

designed for. Third, if visual marking from one center is used to create the gold standard for 

comparison, there may be unconscious bias toward the detector from that center, as those 

doing the manual marking may have knowledge of how that detector works. 

4. Relationship between automatically detected HFOs and surgical 

outcome 
Fifteen studies published between 2011 and 2019 used automatic detectors to relate the 

presence of HFOs to surgical outcome (Table 2). All studies were retrospective, except Jacobs et 

al.41 Most studies used interictal HFOs recorded during slow wave sleep, although one study 

used ictal recordings75 and two studies used intraoperative recordings.62, 76  

In seven of the studies, previously validated algorithms were used to detect HFOs. Eight studies 

employed novel, unpublished automatic detectors, rather than using one of the externally 



validated algorithms in Table 1. In each case, the algorithm parameters were optimized for the 

study’s data set; this would ideally be done using a separate training dataset, but this 

information was not always provided. These novel detectors were typically combinations or 

variations of standard techniques, including RMS amplitude,77 Hilbert envelope,18 T-F analysis,78 

or machine learning methods.13, 79, 80 In addition to the studies in Table 2, a considerable 

number of recent papers used visual markings to identify HFOs for analysis in post-surgical 

outcome. While this may suggest concern about the robustness of automated detection, 

multiple studies have reported that visual and automated detection produce similar results.41, 

62, 81 

Despite the wide variability in detection methods, results using automated algorithms have 

been relatively consistent. Two studies reported that complete resection of brain regions 

exhibiting high HFO rates correlated to good outcome, without separating them into ripple and 

fast ripple bands.13, 82 Higher ripple resection ratios were frequently associated with improved 

surgical outcome,18, 19, 62, 83, 84 and all of the studies that reported significant results for ripples 

also reported significance for fast ripples. However, two studies reported a significant link 

between HFO resection and surgical outcome only in the FR band.19, 78 Generally, FRs were 

found to be a better indicator of surgical outcome,18, 19, 62, 78, 83 although one study reported the 

opposite result,77 and analyses of some larger datasets have not shown FR to be more specific 

than R.41-43, 72 Other studies reported that that concurrent HFO and low frequency oscillations 

were a better marker than either alone,79 and that a machine learning technique could be used 

to automatically rank and classify channels inside and outside the SOZ based on HFO rate.80 The 

significance of HFOs as a predictor of outcome compared to spikes is not clear, as two studies 

reported conflicting results on this.36, 56  

On the other hand, we found two studies reporting that removal of HFOs was not significantly 

correlated to surgical outcome41, 76 The results of a meta-analysis81 indicated that while nearly 

all studies found that increased R/FR resection increased seizure freedom post-surgery, this 

relationship was significant in only half of the studies. Moreover, the only prospective 

multicenter study in Table 2 reported non-significant results at a center level, where iEEG 

measurements used different recording techniques, even though there was correlation 



between high HFO region resection and surgical outcome at a group level.41  The results did not 

improve with visual detection. This may have been due to the analysis techniques used, the 

presence of physiological HFOs, under-sampling of the brain when recording iEEG, differences 

in types of epilepsy, or differences between chronic recording and intraoperative monitoring. It 

is also possible that HFOs are not specific to the EZ in all patients.  

5. Discussion and Recommendations:  
There are a wide range of challenges associated with HFO detection, the most prominent one 

being the lack of a strict physiological definition of an HFO. This precludes the development of a 

universally applicable detector. For every new project, researchers must choose a detector, 

optimize the parameters, and validate its performance. Drawing from the current literature 

reviewed here, we propose some general guidelines for this process, which are detailed below 

and summarized in Table 3. 

Which detection algorithm should be used? Because the energy-based metrics for the detectors 

in Table 1 are correlated (Figure 2), the results of their initial detection will be comparable 

when optimal parameters are used. Evidence for this has come from studies comparing 

different detectors on the same data set (Section 3), which showed that once the detector 

parameters were properly optimized, the performance of the detectors was generally 

comparable. However, the results of the initial detection will include false positives due to 

artifacts and sharp transients. Therefore, implementation of false positive rejection methods 

may have a larger effect on the HFO rate than initial detection. In particular, methods based on 

the time-frequency decomposition are likely to be the most stringent. However, post-

processing steps come at the cost of increasing the complexity of optimization, as more 

parameters are needed.  Overall, the consistency of results using a wide range of detection 

methods suggests that choice of detection scheme is not critical; it is fine to use a simple 

technique, preferably one that has already been validated, as long as parameters are optimized 

for the dataset. In the future, more work is needed to understand the unique underlying 

physiology of HFOs, in order to guide development of more specific detectors.   



How should detector parameters be optimized? All automated algorithms include parameters, 

such as a window size for the energy calculation and thresholds for amplitude, duration, and 

number of peaks. Some studies implement published detectors with fixed parameters. 

However, several studies have shown that proper selection of these parameters is a critical step 

in the detection of HFOs, and there are currently no recommendations for how this should be 

done. The parameters are often dependent on one another, and most studies have focused on 

optimization of the energy threshold relative to the background. However, all parameters 

should be varied over the widest possible range, and the best performance can be chosen using 

the Youden index of (sensitivity + specificity – 1).70, 90 Then the selected values of all parameters 

should be reported along with the results. The optimal set of parameters is likely to be patient 

specific. For this reason, optimizing using small samples from each patient (e.g. use the first five 

minutes of data from each patient to select the parameters, then apply those parameters to 

the rest of the subject’s data) may produce better results than optimizing based on a subset of 

patients (e.g. use all data from three subjects to select the parameters, then apply those 

parameters to the rest of the subjects). There is even some evidence to suggest that the 

parameter selection should be channel-specific.57 It has also been suggested that a 

normalization pre-processing step to reduce the variance between data from different sources 

can provide more consistent detection results.48 In the future, more work is needed to 

understand the robustness of HFO detection to changes in the parameters and recording setup 

and to develop automated patient-specific optimization techniques simple enough to be used 

in a clinical setting. 

How should a new detector be tested and validated? After parameter optimization, the 

detector can be tested and validated via comparison to visually detected events, visual review 

of automatically detected events, comparison to the SOZ, and comparison to surgical outcome. 

One or more approaches may be chosen based on the specific goal of the study. Ultimately, 

validating an algorithm against the resected volume and surgical outcome is the clinical gold 

standard,91 but if consistency with visually detected HFOs is desired, the output of the 

algorithm should first be tested against visual marking or visual review. For all methods, the 

validation should be done on an independent dataset that was not used for parameter 



optimization. In order to robustly validate an algorithm, the detectors and parameters should 

be consistently applied across studies. We found many examples of detectors validated on one 

type of data (or in one frequency band) being used without optimization in a different setting, 

and it is not uncommon for a study to use a variation of an existing detector without repeating 

the validation. This has led to a myriad of different detectors, making comparisons between 

studies almost impossible. In the future, comparing new detection methods directly to a well-

understood benchmark algorithm using the same dataset can help alleviate this problem, and 

authors should make the code for the new algorithm freely available. If the two algorithms 

perform comparably, use of the previously published algorithm is preferable. Similarly, when 

comparing HFO detection to the SOZ or surgical outcome, using multiple detection algorithms 

and varying detection parameters can help verify that the results are robust to these changes. 

How much data should be used for detection? While initial HFO studies used only a few minutes 

of data per patient, due to the laborious nature of visual HFO marking, the use of automated 

algorithms enables analysis of larger datasets. Anti-seizure medications and the occurrence of 

seizures will affect HFO rates, so it is important to perform HFO detection on multiple, 

independent segments of data. It is currently standard practice to use interictal data collected 

during slow wave sleep.  Short segments of data can be clipped periodically overnight, at least 

one hour away from any seizure, collected from multiple nights if possible.78, 92 When reporting 

the results, an analysis of the variability of the measurements over time can be included. In the 

future, more work is needed to understand the stability of SOZ localization as a function of the 

dataset length, and characteristics of HFOs recorded during wakefulness should be explored. 

How can a threshold for the HFO rate be chosen? After detection and the calculation of HFO 

rate for each channel, a threshold must be chosen above which the HFO rate is deemed 

pathological. For a given patient, the goal of this process is to identify any subset of channels 

with anomalously high rates. In theory, brain regions with HFO rates exceeding this threshold 

are potential surgical targets. This is not a trivial task, as the overall HFO rates and differences 

between epileptogenic and non-epileptogenic regions are patient-specific. Large clinical studies 

have shown that the variability of HFO rates between patients is too variable to establish a 

universal threshold for HFO levels,15, 93 and there is no guarantee that the channel with the 



highest HFO rate is abnormal.72 Differences in rate can also occur due to the presence of 

physiological oscillations, different electrode types11 (but see also94), and different types of 

epilepsy. Several automated methods have been proposed. One commonly used method is to 

assume that HFO rates exceeding a pre-determined rate (usually empirically determined) are 

pathological.62 Others include Kernel Density Estimation,42 Kittler’s method,18 Tukey’s upper 

fence,68 and the half maximum method.55 In the future, additional development of patient-

specific optimization techniques is needed. Because the determination of a threshold for HFO 

rate is directly tied to the HFO detection technique and its specificity, the methods for 

accomplishing these two tasks will need to evolve together. 

Are there alternatives to the discrete measurement of HFO rate? Although the literature on 

HFOs is dominated by discrete detection of HFO events and the use of rate as a biomarker for 

the SOZ, several alternatives have been proposed. Some studies have suggested measures that 

can be applied to the entire high frequency signal, rather than detecting discrete events. For 

example, it was reported that the skew in the distribution of power values was higher in the 

SOZ compared to non-SOZ for three frequency bands (5-80Hz, 80-250Hz, 250-500Hz).95 Other 

studies have measured cross-frequency coupling of high frequency amplitude with the low 

frequency phase (delta and theta bands), generally quantified by the modulation index (MI). A 

recent study in 76 patients showed significantly higher MI z-score in the SOZ compared to 

regions outside the SOZ.96 Further, a multi-variate logistic regression analysis found that the 

model predicted outcome better in 123 patients when MI was included as a variable. Guirgis et 

al.97 used eigenvalue decomposition of MI values to delineate a “region of interest” and found 

that when this region was spared during surgery, patients were less likely to be seizure free. 

Weiss et al.98 found that coupling between high gamma (80–150 Hz) amplitude and slow wave 

(1-25Hz) phase was higher in the “ictal core” (territories that were fully recruited to the seizure) 

compared to the periphery, which could potentially aid in more precise localization of cortical 

regions for epilepsy surgery. Lastly, Ibrahim et al.99 found that coupling between high frequency 

amplitude and theta and alpha phase was significantly elevated in the SOZ compared to non-

epileptic regions. It should be noted that three of these studies97-99 used ictal data, which is 

more challenging to collect and analyze than interictal data.  



Functional and effective connectivity networks based on high-frequency data are also being 

investigated. Zweiphenning et al.100 calculated network connectivity via short‐time direct 

directed transfer function for different frequency bands. In patients with good surgical 

outcome, the total strength and net strength of outgoing propagations in the gamma and ripple 

bands was higher in electrodes within resected tissue compared to electrodes in tissue that was 

spared. An earlier study done by the same group found local enhanced connectivity of channels 

showing epileptiform events in the FR-band functional network.101 They hypothesized that 

these hubs might cover the HFO-generating networks and their resection might lead to better 

outcome. González Otárula et al.102 found a network organization of interictal HFOs which 

suggested that the resection of the source channels may be necessary for seizure freedom. 

However, in their dataset, the resection of the source channels was not significantly better than 

resection of channels with highest HFO rates. 

There are advantages to metrics derived from continuous high frequency activity, compared to 

those based on detection of discrete HFOs. These metrics are not limited by the lack of a 

consensus on characteristic HFO features. Moreover, because these approaches generally do 

not define the semiology of individual events, they typically require fewer parameters, thus 

making patient-specific parameter optimization easier. Also, calculating metrics based on 

continuous activity may require less computation time than detecting discrete HFOs. Further 

research into these methods is needed to assess the efficacy of continuous high frequency 

activity as a biomarker of the SOZ. 

Other HFO characteristics, including amplitude, duration, and peak frequency are potential 

alternatives to rate as a marker of the SOZ.  Malinowska et al.103 found that, in addition to HFO 

rates, HFO amplitudes and frequencies significantly differed between SOZ and non-SOZ in ictal, 

non-ictal and pre ictal periods. Pail et al.25 found that both ripple and fast ripple durations were 

shorter in the SOZ than outside it, and the relative HFO amplitudes were also higher in the SOZ. 

Charupanit et al.37 identified anomalous high frequency activity that stood out from the 

background and found that while the rates of these events were similar in and outside the SOZ, 

there was a significant difference in the amplitudes between the two regions. 



Overall, the results using automated HFO detection for determination of the SOZ and 

comparison to surgical outcome are promising, and these techniques are gradually becoming 

accepted as robust and reliable. They make it possible to analyze large amounts of data very 

quickly. Standardized practices for the implementation and optimization of detectors will 

facilitate comparisons across multiple studies and identification of generalizable trends, which 

will lead to more rapid advancements in the clinical use of HFOs. 
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Figures 

 

Figure 1. HFO examples (gray boxes). (A) Ripples consist of oscillations in the 80-250 Hz 

frequency band, and (B) fast ripples contain oscillations in the 250-500 Hz frequency band. The 

events are barely visible in the broadband data (top), but clearly stand out from the background 

when a band-specific filter is applied (bottom). Depth electrode recordings are from the 

amygdala (ripple) and anterior cingulate (fast ripple) of an 18-year-old male. 

 

 

Figure 2. Energy measures used for HFO detection are highly correlated. Measurements of RMS 

amplitude (blue), Hilbert envelope (red), and line length (orange) are shown for (A) a 

representative ripple, recorded from the left anterior cingulate and (B) a representative fast 

ripple, recorded from the right anterior hippocampus. Depth electrode recordings are from an 

18-year-old male. Line Length has been multiplied by a factor of five to aid visual comparison to 

the other measures. (C) The correlation between all three energy measures is high. Correlation 

coefficients were calculated between pairs of energy measures for 100 randomly selected data 

segments containing HFOs after bandpass filtering between 80-500 Hz.  



 

Figure 3. Time-frequency analysis can be used to distinguish between HFOs and sharp 

transients. Representative examples are shown for (A) ripple, recorded from supplementary 

motor area, (B) fast ripple, recorded from left anterior cingulate, (C) an artifact consisting of a 

narrow, high amplitude spike, recorded from the right posterior hippocampus and (D) an 

epileptiform discharge with an embedded ripple, recorded from left anterior hippocampus. 

Depth electrode recordings are from an 18-year-old male. In each subfigure, the top trace is the 

broadband iEEG signal, the middle trace is the 80-500 Hz filtered signal, and the bottom shows 

the time-frequency decomposition based on Morse wavelets. The events have similar 

morphology in the bandpass filtered data, but the time-frequency decompositions are unique. 

 

 

 



Table 1: Automatic Detection Algorithms 

Abbreviations – RMS: root-mean-square, T-F: time-frequency, T: Threshold, L: Window Length, D: Minimum duration, P: Minimum number of 

peaks, S: Minimum separation between distinct events, LF: Low frequency, HF: High frequency, LT: Low Threshold, HT: High Threshold, Nw: 

Number of wavelets, Ni: Number of iterations, GA-MP: Gabor atom – Matching Pursuit. Depth electrodes include any listed as depth 

macroelectrodes or stereotactic EEG in the original publication, while subdural refers to grids or strips on the cortical surface. Recordings were 

extraoperative without anesthesia, unless denoted as intraoperative. Validation methods include (1) Visual detection, consisting of direct 

comparison of automatically and visually identified HFOs, (2) Visual review, in which experts visually review automatically identified events, and 

(3) Comparison to SOZ to test whether or not high HFO rates are specific to the SOZ. 

Reference 
Electrode type 
(Referencing) 

Frequency 
range 

Energy Measure (Parameters) Artifact Rejection (Parameters) Validation 

Staba 2002 Depth, micro 
(not reported) 

100-500Hz RMS Amplitude (Tx2, L, D, P, S) None Visual review 

Zelmann 2010  Depth (not 
reported) 

80-450Hz RMS Amplitude 
(T, D, S), informed by wavelet entropy 
baseline detection (T) 

None  Visual detection 
for HFOs and 
baseline (two 
reviewers)  

Blanco 2011 Subdural, 
depth with 
micro-wires 
(not reported)  

100-500Hz RMS amplitude 
(Tx2, L, D, P, S)  

Events discarded if similar to local 
background estimated by a Gaussian 
mixture model; remaining events were 
clustered, artifact cluster was rejected  

Comparison to 
SOZ 

Chaibi 2013 Depth (not 
reported) 

80-500Hz RMS Amplitude after Hilbert Huang 
transform (T, L, P) 

None Visual detection 
(two reviewers)  

Gliske 2016 Depth 
(common 
average) 

100-500Hz RMS Amplitude (T, L, D, P, S) Fast transients, DC shifts (L, Tx2, D); 
Artifact in common average (Tx2, L, D, P, 
S) 

Visual review 
(three reviewers) 

Wu 2018 Depth (not 
reported)  

80-500Hz RMS Amplitude  
(T, L, D, P) 

Clustering algorithm using 4 features Comparison to 
SOZ  

Liu 2018  Subdural, 
depth (bipolar) 

80-500Hz RMS amplitude 
(Tx2, L, D, P, S) 

Event considered artifact if the number of 

zero crossings was greater than 10 (T); 

clustering using 3 features to isolate HFOs 

from other events   

Comparison to 
SOZ 

Gardner 2007 Subdural, 
depth  
(not reported) 

30-100Hz Short term line length 
(T, L) 

None Visual detection 
and visual 
review 



Dumpelmann 
2012 

Subdural, 
depth (not 
reported) 

80-344Hz Mean of squared amplitude, short term 
line length, instantaneous frequency 
(T, D, S) 

None  Visual detection 
(two reviewers) 

Birot 2013 Depth (not 
reported) 

250-600Hz Square of filtered signal tapered by 
Hanning window 
(T, L) 

Two methods to test ratio of power 

between HF and LF bands (D, LF, T)  

Visual detection 
(one reviewer)  

Crepon 2010 Subdural, 
depth (bipolar)  

180-400Hz Hilbert Envelope  
(T) 

Peak in Morlet wavelet T-F decomposition  None 

Burnos 2014 Subdural, 
depth (bipolar) 

80-500Hz Hilbert Envelope  
(T, D, P, S) 

Ratio of power between HF and LF bands 
(T, LF, HF) 

Comparison to 
SOZ 

Liu 2015  Not reported 
(not reported) 

80-500Hz Median operator threshold based on the 
median of the standard deviation of filtered 
data 
(T, D) 

Min/max duration; raw data crosses zero 

>10 times; K-means clustering based on 3 

features 

(N, T, D) 

Comparison to 
SOZ  

Charupanit  
2017 

Depth (not 
reported) 

80-250Hz Iterative procedure to estimate background 
amplitude and set threshold (T) 

None Visual detection 
(two reviewers)  

Wu 2017  Subdural (not 
reported) 

80-250Hz, 
250-600Hz 

Two methods: (1) Signal power 
reconstructed by complex Morlet wavelet 
and Shannon entropy (T, D, Nw); (2) RMS 
amplitude deconstructed by the adaptive 
GA-MP algorithm (T, D, Ni) 

None  Comparison to 
SOZ 

Ren 2018 Subdural, 
depth- 
(bipolar) 

80-200, 
200-500Hz 

Distribution of ranges in filtered data (local 
max-min for adjacent peaks) to estimate 
background and select threshold  
(LT, HT, P) 

None Visual detection 
(three reviewers)  

Cimbalnik  
2018 

Depth, micro 
(not reported) 

44-120Hz, 
73-197Hz, 
120-326Hz, 
197-537Hz 

Dot product of amplitude and frequency 
dominance  
(T, S) 

Detection must exceed threshold for 5 
features 
(Tx5)  

Visual review (3 
reviewers)  

 

  



Table 2: Papers that relate HFOs and clinical outcome using automatic detection 

Abbreviations – FCD: focal cortical dysplasia, EMD: empirical mode decomposition, LFO: low frequency oscillation, FR: fast ripple, NA: not 

applicable (not tested), R: ripple, SVM: support vector machine. Depth electrodes include any listed as depth macroelectrodes or stereotactic 

EEG in the original publication, while subdural refers to grids or strips on the cortical surface. Recordings were extraoperative without 

anesthesia, unless denoted as intraoperative. 

Reference 
No. of 

subjects 
Electrode type  
(Referencing) 

Frequency 
Range 

Detector 

Removal correlated to better 
surgical outcome? 

R FR Comparison 

Akiyama 
2011  

28 
Subdural, depth (bipolar) R: 80-200 

FR: 200-300 
New detector based on Hilbert transform + threshold Yes Yes  FR>R 

 Other result: SOZ not correlated with seizure outcome. 
Cho 2014  

15 
Subdural, some depth 
on suspected lesions 
(common electrode, Pz) 

R: 60-200 
FR: 200- 500 

New detector based on Crepon 2010 and Staba 2002;33, 54 false 
positive detection using power and amplitude relative to 
background 

Yes  Yes  R>FR 

van klink 
2014 

14 
Subdural (bipolar) R: 80-250Hz 

FR: 250-500Hz 
Zelmann 2010;47 parameters were optimized on training data; 
spikes were visually identified 

No Yes FR>R 

Dian 2015  
6 

Subdural (bipolar) LFO: <80 Hz 
HFO: 80-400Hz 

New detector based on EMD and feature extraction for LFO 
and HFO; SVM to classify channels; used separate training and 
testing datasets 

NA NA NA 

 Other result: HFO+LFO more consistent than LFO or HFO alone; analyzed 3 subjects 
Sun 2015 

4 
Subdural (not reported) R: 80-250Hz 

FR: 250-500Hz 
New detector; Advanced source analysis software85  Yes  Yes  FR>R 

Fedele 2016  
  54 

Intraoperative subdural 
(bipolar) 

R: 80-250Hz 
FR: 250-500Hz 

New detector; events exceeded threshold based on Stockwell 
entropy for a min time, confirmed using HF peak in Stockwell 
transform; multichannel analysis to reject events occurring 
broadly 

Yes  Yes  FR>R 

 Other result: In post-resection intraoperative ECoG, FRs have 100% PPV and Ripples have 100% NPV 

Fedele 2017  
9 

Subdural, acquired with 
custom device and low 
noise amplifier (bipolar) 

FR: 250-500 Hz New detector; HFO detection and artifact rejection using 
Fedele 201686, with T-F analysis as in Burnos 201455 

NA Yes NA 

Fedele 2017 

20 

Subdural, depth (bipolar) R: 80-250Hz 
FR: 250-500Hz 

Burnos 201661, with baseline detected separately for FR and R  Yes  Yes  R more 
sensitive; FR 
more specific 

Other result: FRs co-occurring with ripples predict seizure outcome better than each individually (100% specificity)  



 

 

 

  

van ‘t 
Klooster 
2017 

54 
Intraoperative subdural 
(bipolar) 

R: 80-250Hz 
FR: 250-500Hz 

Zelmann 201047 optimized for ECoG bipolar data; artifacts 
visually detected  

No  No NA 

 
Other result: Presence of FRs in the post-resection ECoG, given incomplete removal of FRs based on pre-resection ECoG, indicated worse 
outcome. None for ripples. 

Liu 2017  
1 

Subdural (not reported) 80-500Hz Liu 201673 NA NA NA 
Other result: HFOs provided more localized SOZ than spiking activity. 

Jacobs 2018 
52 

Chronic depth or 
intraoperative subdural 
(not reported) 

R: 80-250Hz 
FR: 250-500Hz 

Zelmann 201047; 3 patients were used for training detector at 
each center  

No No NA 

 Other result: At an individual level, no reliable prediction could be made about outcome using HFOs 
Cuello-
Oderiz 2018  21 

Depth; patients with FCD 
(bipolar)  

R: 80-250Hz 
FR: > 250Hz 

von Ellenrieder 201689; parameters optimized using first one 
minute of data 

Yes  Yes  *  

*Other result: R and FR had same specificity, but FRs had lower false positive rate 
Cimbalnik 
2018  90 

Subdural, depth (not 
reported) 

65-600Hz New detector; physiological and pathological HFOs detected 
separately. Multiple feature cascade detector, trained and 
validated on separate data sets   

NA NA NA 

 Other result: Failure to resect high HFO rate regions associated with poor outcome.  
Sumsky 
2019  14 

Subdural, depth 
(common average) 

>80Hz New detector; Gliske 201642 plus SVM classifier based on HFO 
rate to identify SOZ channels 

NA NA NA 

Other result: The method predicted the resected volume only in cases with good post-surgical outcome 



Table 3. Recommendations for implementation of automated HFO detection algorithms 

Which detection algorithm should be used? 

• Initial detection is likely to be similar across algorithms; simple, previously validated algorithms 
are preferred 

• Rejection of false positive detections due to artifacts is crucial; methods can be based on time 
domain properties, the TF decomposition, or machine learning 

How should detector parameters be optimized? 

• Vary all parameters over the widest possible range; choose the combination with the best 
performance 

• If possible, optimize parameters for each subject using a subset of reserved data 

• Report all parameters values when publishing results 

How should a new detector be tested and validated? 

• Both event-level validation techniques (to verify the characteristics of detected events) and 
clinical validation techniques (to verify that the detected events are a biomarker of epilepsy) are 
needed 

• Event-level validation techniques: 

− To maximize overlap between automatic and visual detection, compare to visually detected 
events 

− To ensure minimal false positives in a large dataset, perform visual review of automatically 
detected events 

• Clinical validation techniques: 

− To test detected events as an interictal biomarker of the SOZ, compare to clinically-defined 
SOZ 

− To test detected events as an interictal biomarker of the EZ, compare to surgical outcome 

• Use independent datasets for parameter selection and validation 

• Compare directly to results using a validated benchmark algorithm 

• Make code for the algorithm freely available 

How much data should be used for detection? 

• Standard practice is to use interictal data during slow-wave sleep 

• Analyze as much data as possible, at least multiple independent segments for each subject 

How can a threshold for the HFO rate be chosen? 

• Kittler’s method, Tukey’s upper fence, kernel density estimation, and the half maximum method 
have been successfully implemented 



• Selection of threshold for HFO rate is intertwined with choice of detection algorithm 

 

 


