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Abstract 

Objective:  Favorable neurodevelopmental outcomes in epileptic spasms (ES) are tied to early diagnosis 

and prompt treatment, but uncertainty in the identification of the disease can delay this process. 

Therefore, we investigated five categories of computational electroencephalographic (EEG) measures as 

markers of ES. 

Methods:  We measured 1) amplitude, 2) power spectra, 3) Shannon entropy and permutation entropy, 

4) long-range temporal correlations, via detrended fluctuation analysis (DFA) and 5) functional 

connectivity using cross-correlation and phase lag index (PLI). EEG data were analyzed from ES patients 

(n=40 patients) and healthy controls (n=20 subjects), with multiple blinded measurements during 

wakefulness and sleep for each patient. 

Results:  In ES patients, EEG amplitude was significantly higher in all electrodes when compared to 

controls. Shannon and permutation entropy were lower in ES patients than control subjects. The DFA 

intercept values in ES patients were significantly higher than control subjects, while DFA exponent 

values were not significantly different between the groups. EEG functional connectivity networks in ES 

patients were significantly stronger than controls when based on both cross-correlation and PLI. 

Significance for all statistical tests was p<0.05, adjusted for multiple comparisons using the Benjamini-

Hochberg procedure as appropriate. Finally, using logistic regression, a multi-attribute classifier was 

derived that accurately distinguished cases from controls (area under curve of 0.96). 

Conclusions:  Computational EEG features successfully distinguish ES patients from controls in a 

large, blinded study. 

Significance: These objective EEG markers, in combination with other clinical factors, may speed the 

diagnosis and treatment of the disease, thereby improving long-term outcomes. 

 

I. Introduction 

Epileptic spasms (ES) is an epileptic encephalopathy with typical onset between 4-7 months of 

age (Hrachovy and Frost 2003). These seizures occur in clusters and consist of abrupt muscle spasms, 

often accompanied by an interictal electroencephalographic (EEG) pattern known as hypsarrhythmia 

(Gibbs et al. 1953; Pavone et al. 2013; Fisher et al. 2018). Hypsarrhythmia is marked by asynchronous, 

high-amplitude slow waves, a disorganized background, and multi-focal independent spikes (Gibbs et al. 

1953; Hrachovy et al. 1981, 1984). Children with ES often exhibit neurocognitive stagnation, 

psychomotor delay, and other refractory seizure types (Primec et al. 2006; Gaily et al. 2010; Riikonen 

2010; Pavone et al. 2013; Widjaja et al. 2015). Prompt, successful treatment increases the likelihood of a 
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favorable outcome, but diagnosis and clinical treatment decisions are challenging and often delayed for 

various reasons. First, epileptic spasms are associated with a wide range of underlying etiologies 

(Osborne et al. 2010; Riikonen 2010), and there is potential for misdiagnosis of subtle ES as other seizure 

types or unrelated benign conditions (Shields 2004; Auvin et al. 2012). Second, the wide variability of 

EEG patterns, such as hypsarrhythmia and so-called modified hypsarrhythmia, can confound visual 

interpretation of the EEG (Gibbs et al. 1953; Hrachovy et al. 1984; Sue et al. 1997; Frost et al. 2011). 

Although the presence of hypsarrhythmia is often used as a diagnostic marker of the syndrome, there is 

low inter-rater reliability for identification of the pattern (Hussain et al. 2015; Mytinger et al. 2015) and 

it is not a predictor of outcome (Demarest et al. 2017). Overall, rates of sustained treatment response 

are low due to a paucity of effective first-line therapies and a high relapse rate (Hrachovy et al. 1983; 

Baram et al. 1996; Ito et al. 2002), and this is further complicated by diagnostic challenges and the 

subsequent use of inappropriate therapies in cases of misdiagnosis (O’Callaghan et al. 2011; Auvin et al. 

2012). Computational EEG biomarkers of ES that are independent of the presence of hypsarrhythmia 

would help address these challenges by providing tools for objective—and perhaps more accurate—

identification of the disease.  

We previously demonstrated that several computational metrics are relevant to ES, such as EEG 

amplitude (Smith et al. 2018), power spectrum (Smith et al. 2018), the strength of long-range temporal 

correlations in EEG amplitude modulations (Smith et al. 2017), and functional connectivity (Shrey et al. 

2018). However, those results were obtained using a relatively small, homogeneous cohort of patients 

with new-onset ES. Here, we sought to validate these findings in a separate, much larger, and more 

diverse cohort of ES patients, the majority of which exhibited refractory spasms. The dataset collected 

for this analysis is entirely new and has not been used in any of our previous publications. We measured 

five types of computational EEG metrics in all subjects: 1) amplitude, 2) power spectrum and spectral 

edge frequency, 3) Shannon and permutation entropy, 4) long-range temporal correlations, and 5) 

functional connectivity using both amplitude and phase-based measures. We compared the results to a 

group of normal children who underwent EEG monitoring to rule out ES or other seizures. In addition to 

the larger cohort, we have enacted randomization and blinding procedures to mitigate bias in the 

selection of subjects and EEG clips, and we analyzed EEG in both sleep and wakefulness, with multiple 

EEG clips for each patient in order to evaluate the reproducibility of computational measurements. This 

comprehensive study describes objective EEG characteristics that may improve the accuracy and latency 

of ES diagnosis. 

II. Methods 

2.1 Identification of Cases and Controls 

Approval to perform this study was obtained from the UCLA Institutional Review Board. Using a 

clinical video-EEG database, which includes all patients who underwent video-EEG monitoring at UCLA 

Mattel Children’s Hospital between February 2014 and July 2018, we identified ES cases and normal 

controls as follows. To select cases, we used a computer-aided algorithm to randomly select 50 patients 

with ES who exhibited epileptic spasms on an overnight video-EEG, regardless of the presence or 

absence of hypsarrhythmia. To select controls we implemented a similar algorithm to randomly select 

25 patients who (1) underwent overnight video-EEG to evaluate for suspected epileptic spasms, (2) 

exhibited a normal video-EEG, and (3) were deemed neurologically normal (i.e. no known or suspected 

neurological diagnosis as per clinical neurology assessment after EEG). We chose these criteria to mimic 
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the clinical scenario in which a patient is being evaluated for suspected epileptic spasms (including 

relapse), and physicians must determine whether spasms are present or not. Ultimately, we envision our 

proposed computational EEG features would be used in this situation. However, with these strict 

inclusion criteria and the high proportion of patients with refractory spasms typically seen at UCLA, we 

found that the control group was considerably younger than the cases (median age 7.5 months, IQR 5.1-

9.8 months for controls, and median age 11.1 months, IQR 7.7-20.8 months for cases). Therefore, we 

assembled an approximately age-matched cohort as follows: To add older control patients, we identified 

25 children who presented for evaluation of possible seizures, without the criterion that the seizures 

were epileptic spasms; these patients were ultimately found to be seizure-free and neurologically-

normal in a fashion identical to the original control group. We then used an automated algorithm to 

randomly select subjects (in a 2:1 ratio of cases to controls) from amongst the 50 potential cases and 50 

potential controls. To generate similar age distributions in an unbiased fashion, the process was 

repeated iteratively until the group-wise difference between cases and controls was less than 10% for 

median age, mean log-transformed age, and standard deviation of log-transformed age. The final cohort 

included 40 ES cases and 20 control subjects. 

2.2 Data Abstraction 

Each subject underwent an overnight video-EEG using Nihon Kohden equipment for data 

acquisition, with typical duration of 19 hours. The recording reference was on the parasaggital centro-

parietal scalp, and all EEG signals were re-referenced offline prior to analysis (Figure 1). The recordings 

included 19 channels of EEG, using the international 10-20 placement system. The number of sleep 

epochs varied considerably across subjects, but all of them had at least two discrete epochs of 

wakefulness and two discrete epochs of sleep. For analysis, we extracted two EEG clips during 

wakefulness and two clips during sleep from each subject. Whenever possible, each clip contained 20 

minutes of EEG data. Data were sampled at 200 Hz with impedances below 5 kΩ. 

Epoch selection was guided by a randomization algorithm. This algorithm dictated two time-

points (one for wakefulness, one for sleep) during the first four hours of the recording, and similarly, two 

random times during the last four hours of the recording. An EEG reviewer then opened the EEG file to 

each specific timepoint. If asked to abstract wakefulness and the patient was awake at the prespecified 

time, the reviewer began clipping at that time. In contrast, if asked to abstract wakefulness and the 

patient was asleep, the reviewer scrolled forward until waveforms associated with wakefulness were 

encountered with confidence, and then began clipping. The EEG reviewer did not use video to 

distinguish wakefulness and sleep, but instead used indicators such as sleep architecture, posterior 

dominant rhythm, artifacts indicating wakefulness, and slow roving eye movements. 

2.3 EEG artifact identification 

Time periods in the EEG containing artifact were identified using an automatic extreme value 

detection algorithm, similar to previously published methods (Durka et al. 2003; Moretti et al. 2003) 

(Figure 1). Specifically, the data were first broadband bandpass filtered (1.5 – 40 Hz, Butterworth filter). 

The mean was subtracted from each channel, and the standard deviation was calculated using the entire 

zero-mean time series. Whenever the absolute value of the voltage exceeded a threshold of 7.5 

standard deviations above the mean value in any single channel, the time points were marked as 

artifact. A buffer of 0.9 seconds was added before and after the extreme amplitude values to ensure 

that the entire artifact was marked. Data recorded during EEG impedance checks were also 
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automatically identified and marked. Note that artifacts were identified using broadband filtered data, 

but the artifactual EEG epochs were removed after the band-specific filtering needed for each metric. In 

all cases, artifactual segments of data were excluded from all channels, even if the artifact occurred in a 

single channel. 

2.4 Computational EEG metrics 

All computational EEG analysis was done using MATLAB. We calculated five types of 

computational metrics for each EEG recording: amplitude, power spectrum and spectral edge frequency, 

Shannon and permutation entropy, long-range temporal correlations, and amplitude- and phase-based 

functional connectivity networks (Table 1). These metrics were chosen because they are commonly used 

in EEG signal analysis and demonstrated relevance to ES both in the literature and in our prior studies 

using a smaller, more homogeneous cohort (Smith et al. 2017, 2018; Shrey et al. 2018). All procedures 

for data pre-processing, filtering, artifact removal, and calculation of computational metrics are 

summarized in Figure 1. Data were re-referenced to the common average for the functional connectivity 

measures, and a linked-ear montage was used for all other analyses (Stam et al. 2007; Shrey et al. 2018). 

We implemented different filtering strategies as needed for each calculated metric. For calculation of 

the EEG amplitude, power spectrum, spectral edge frequency, and cross correlation functional 

connectivity, we bandpass-filtered the re-referenced data from 0.5-55 Hz to include all frequencies of 

clinical interest. Phase-lag index functional connectivity was measured in the delta frequency band (1-4 

Hz); this computational metric requires selection of a narrow frequency range, and the delta band was 

chosen to enable comparison to the cross-correlation connectivity, which will be primarily driven by the 

low frequency activity. For calculation of DFA, Shannon entropy, and permutation entropy, we analyzed 

all standard narrow frequency bands (delta band 1-4 Hz, theta band 4-7 Hz, alpha band 8-12 Hz, and 

beta band 14-30 Hz).  

Table 1. Definitions, clinical interpretations, and previous applications of computational EEG metrics. 

Metric Definition Clinical interpretation Previous applications to 
epileptic spasms 

Amplitude Range (max minus min) of 
the broadband EEG in 1-
second windows 

High amplitude can occur 
due to the presence of 
hypsarrhythmia, but is not 
specific to this EEG pattern; 
primarily reflects delta band 
activity 

(Hrachovy et al. 1984; Nehlig 
et al. 2012; Pavone et al. 
2013; Smith et al. 2017, 
2018)  

Power 
spectrum 

Power at each frequency, 
calculated using the Fourier 
transform of 5-second 
windows of EEG 

High power in low 
frequencies could be 
attributed to slow waves 
seen in hypsarrhythmia; 
however, unlike the 
amplitude metric, the power 
spectrum can equally assess 
all frequency bands 

Low frequencies: (Nehlig et 
al. 2012), (Smith et al. 2018) 
High frequencies: (Kobayashi 
et al. 2004; Inoue et al. 2008; 
Wu et al. 2008a; Nariai et al. 
2020; McCrimmon et al. 
2021) 

Spectral edge 
frequency (SEF) 

Frequency threshold below 
which 95% of the EEG power 
is located  

SEF tends to be related to 
the most dominant visual 
frequency, which may be low 
if slow waves are present 

(Smith et al. 2018) 

Entropy Measurements of the 
predictability of EEG 

Level of organization of the 
EEG; for example, in theory, 

In ES: (Van Putten and Stam 
2001) 
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amplitude values (Shannon 
entropy) and relative 
occurrences of short 
sequences of EEG data 
points (permutation entropy) 

the posterior dominant 
rhythm would have low 
entropy, but hypsarrhythmia 
would have high entropy 

In other epilepsies:  
(Kannathal et al. 2005a, 
2005b, 2014; Rosso et al. 
2005) 

Long-range 
temporal 
correlations 

The Hurst exponent, 
estimated using detrended 
fluctuation analysis (DFA); 
the DFA intercept is related 
to the variance of the EEG 
amplitude envelope 

Related to the 
autocorrelation of the EEG 
amplitude over time lags up 
to ~100 seconds; high 
correlation over long time 
lags indicates strong 
regulation of neural 
synchrony 

In ES: (Smith et al. 2017) 
In other epilepsies: (Parish et 
al. 2004; Monto et al. 2007) 

EEG Functional 
connectivity 

Cross-correlation to measure 
amplitude-based 
relationships; Phase lag 
index to measure phase-
based synchronization; both 
measures exclude volume 
conduction effects 

Correlated activity between 
two brain regions; related to 
synchrony, but only sensitive 
to signals that are not 
perfectly in-phase with one 
another 

(Japaridze et al. 2013; 
Burroughs et al. 2014; Shrey 
et al. 2018) 

 

 

Figure 1. Pre-processing steps to re-reference, filter, and remove artifacts in EEG data from epileptic 

spasms (ES) patients and control subjects.  

2.4.1 Amplitude 

 Because hypsarrhythmia and other interictal patterns are defined by a high amplitude (typically 

greater than 200-300 µV), the EEG amplitude is a clinically relevant signal feature in ES (Hrachovy et al. 

1984; Nehlig et al. 2012; Pavone et al. 2013). Amplitude values were calculated using the range of the 
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broadband filtered data in one-second windows for each electrode. The variation of EEG amplitude across 

channels was visualized via topographic maps. For each group, the topographic maps were constructed 

using the median value across all patients for each electrode location. The figures were generated using 

the MATLAB-based EEGLAB function “topoplot”. To compare amplitude distributions across subjects, we 

calculated the empirical cumulative distribution function (CDF) for the Cz electrode in each patient 

dataset. Electrode Cz was chosen because it is minimally contaminated by artifact. 

2.4.2 Power Spectrum and Spectral Edge Frequency 

 For each channel, data were divided into 5-second epochs, and the power spectrum was 

calculated via the fast Fourier transform on the broadband bandpass-filtered data (0.5-55 Hz). The mean 

power spectrum was obtained by averaging the power spectra over all epochs. We calculated the 

decibel change to compare pathological spectra (in ES subjects) to physiological spectra (control 

subjects). The dB change is defined as follows: 

𝑑𝐵𝑐ℎ𝑎𝑛𝑔𝑒 =  20 log10 (
𝑃𝐸𝑆

𝑃𝐶𝑂𝑁𝑇𝑅𝑂𝐿
) 

where 𝑃𝐸𝑆 is the averaged power spectrum of the ES group and 𝑃𝐶𝑂𝑁𝑇𝑅𝑂𝐿 is the averaged power 

spectrum of the control group. We report differences in the standard frequency bands of delta (1-4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). 

To quantify differences in the spectra using a single metric (as opposed to one value for each frequency 

band), the spectral edge frequency (SEF) was defined as the frequency below which 95% of the power 

resides (Schwender et al. 1996). Topographic maps of the spectral edge frequency were created by 

calculating the SEF value for every channel from each patient. Groupwise topographic maps show the 

median SEF values across subjects, calculated individually for each channel. 

2.4.3 Entropy  

 Entropy is the amount of information contained in a signal, and it is conceptually related to the 

“predictability” of the data. We calculated both the Shannon entropy and the permutation entropy for 

ES patients and control subjects. 

Shannon entropy is derived from information theory and depends only on the distribution of 

values in the data; it is independent from the data’s temporal structure. The Shannon entropy H was 

calculated for each channel as follows (Shannon 1948):  

𝐻(𝑋) =  − ∑ 𝑝(𝑥𝑖) log2 𝑝(𝑥𝑖)

𝑛

𝑖=1

 

where  𝑝(𝑥𝑖) is the probability of observing the 𝑖𝑡ℎ value of the bin series in data 𝑥, and 𝑛 is the number 

of bins (Cohen 2014). We calculated the optimal number of bins according to Freedman and Diaconis, 

1981 (Freedman and Diaconis 1981) as described by Cohen, 2014 (Cohen 2014). The entropy calculation 

has units of bits, and higher values indicate more stochastic behavior (Van Putten and Stam 2001; 

Kannathal et al. 2005a, 2005b, 2014; Rosso et al. 2005). We calculated Shannon entropy values for all 

EEG electrodes and reported the mean entropy value. 
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 Unlike Shannon entropy, permutation entropy quantifies the complexity of a time series while 

taking the temporal order of the signal into account by the utilization of symbolic dynamics (Bandt and 

Pompe 2002): 

𝐻(𝑛) =  − ∑ 𝑝𝑗
′ log2(𝑝𝑗

′)

𝑛!

𝑗=1

 

where the 𝑝𝑗
′  represent the relative frequencies of the possible patterns of symbol sequences and 𝑛 is 

the embedding dimension (Bandt and Pompe 2002; Riedl et al. 2013). Permutation entropy was 

calculated on the EEG data from the Cz electrode for each subject in all frequency bands. We used an 

embedding dimension 𝑛 = 4 and a time delay 𝜏 = 1.   

2.4.4 Long-range temporal correlations 

Detrended Fluctuation Analysis (DFA) is a statistical estimation algorithm used to measure the 

strength of long-range temporal correlations in time series (Peng et al. 1992, 1994; Hardstone et al. 

2012). Specifically in neural time series, the temporal modulation of EEG amplitude occurs over periods 

lasting tens of seconds and is believed to reflect the brain’s ability to control its neuronal synchrony 

(Linkenkaer-Hansen et al. 2001). Here, DFA was implemented using the algorithm as outlined in our 

previous study (Smith et al. 2017), adapted from Peng at al. (Peng et al. 1994) and Hardstone et al. 

(Hardstone et al. 2012). We included box sizes ranging from 1 second to 1/10 of the signal length. If the 

recording exceeded 1200 seconds in length, the maximum box size was set to 120 seconds. The DFA 

exponent, denoted DFAe, is a direct estimate of the Hurst parameter and reflects the strength of the 

long-range temporal correlations present in the time series (Hardstone et al. 2012). The DFAe value for 

positively correlated signals varies between 0.5 and 1.0, and human neural electrophysiology data 

typically falls within this range.  

Because we noted little variation across channels, we averaged DFAe from all individual channels 

to obtain a single value for each recording. The intercept of the DFA plot (DFAi) was calculated by 

extrapolating on the logarithmic plot to find the fluctuation value when the window size equaled one 

sample (the value at which the logarithm of the window size equals zero) (Smith et al. 2017). Similar to 

the DFA exponent, we averaged DFAi from all channels to obtain a single value for each patient. This 

calculation was done independently for each frequency band. 

2.4.5 Functional Connectivity Networks 

 Functional connectivity is a measure of the correlation between electrophysiological signals in 

two different brain regions. We calculated functional connectivity networks using both amplitude- and 

phase-based measures in the ES and control subjects. The amplitude-based measure calculates 

functional connectivity via cross-correlation in one-second epochs using the method developed by 

Kramer et al. (Kramer et al. 2009) and Chu et al. (Chu et al. 2012) and previously applied to ES EEG data 

by our group (Shrey et al. 2018). For each epoch, the connection was deemed to be significant if the 

maximum cross-correlation value for the channel pair fulfilled two criteria: (1) it occurred at a non-zero 

lag time, and (2) it exceeded a significance threshold obtained via permutation resampling. The overall 

connection strength between two channels was calculated as the percentage of epochs in which the 

connection was significant. For visualization, we created network maps in which edges (connections) 
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between nodes (electrodes) were drawn if the connection value exceeded a threshold; note that this 

threshold was not used for any statistical tests. 

 We additionally applied a phase-based measure of functional connectivity called the phase lag 

index (PLI). This method calculates the level of synchronization between two electrodes by determining 

whether the phase of one signal consistently leads or lags the other signal (Stam et al. 2007): 

PLI =  |
1

𝑁
∑ 𝑠𝑖𝑔𝑛(∆φ(𝑡𝑛))

𝑁

𝑛=1

| 

where the PLI value represents the mean signum of the phase difference ∆𝜑(𝑡𝑛) between the two 

signals over a time period of length N. The instantaneous phase was extracted using the Hilbert 

transform of the narrow bandpass-filtered EEG signal. We measured PLI between all channels pairs for 

all 19 electrodes in the delta frequency band (1-4 Hz) in eight-second epochs of clean data, resulting in a 

19-by-19 adjacency matrix for each epoch of data. Significance was assessed via surrogate data that was 

created by shuffling the Fourier phases of the original signal for 100 iterations. The PLI value for the 

channel pair was considered significant if it exceeded the 95th percentile of the surrogate data 

distribution. Non-significant connections were replaced with PLI values of zero. The functional 

connectivity network for each subject was calculated by averaging the pseudo-binary adjacency matrices 

over all epochs. 

2.5 Calculation of computational EEG metrics 

For each subject, we calculated the metrics for both EEG clips during wakefulness and during 

sleep, and we averaged the two wakefulness values and the two sleep values. All subsequent analysis 

was performed with the average wakefulness value and the average sleep value. Note that, for both 

patient groups, the metric values for the two clips were highly correlated, indicating favorable 

reproducibility of the measurements (Supplementary Table 1). The metrics were computed on each EEG 

clip by authors (BAL, DWS, RJS) who were blinded to the patient groups, clip numbers, and designation 

of wakefulness or sleep. 

2.6 Statistical Methods 

Summary data were reported as mean (standard deviation), or if non-normally distributed, as 

median (interquartile range). Groupwise comparisons of medians were carried out using the Wilcoxon 

rank-sum test. Logistic regression models were developed using a forward stepwise approach whereby 

each candidate independent variable with an association with the dependent variable on a pairwise 

basis (i.e. p < 0.1) was sequentially entered into the model, in order of smallest to largest p-value. A 

given independent variable remained in the model only if the association with outcome was maintained 

(again, p < 0.1). Evaluation for multicollinearity was carried out with visual inspection of covariate 

scatter plots and calculation of all pair-wise correlation coefficients. Adjustment for multiple 

comparisons was accomplished using the Benjamini-Hochberg (BH) procedure. Statistical calculations 

were carried out using Stata (version 14, Statacorp; College Station, Texas, USA) and MATLAB (ver. 

2019b, MathWorks, Inc; Natick, MA, USA). 

III. Results: 

3.1 Subjects 
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Clinical and demographic attributes of the study population are summarized in Table 2. The 

median (interquartile range) ages of the 40 cases and 20 controls were 11.0 (7.6 – 22.6) and 9.9 (7.4 – 

27.9) months, respectively. Twenty (50%) of the ES cases were female, as were eight (40%) of controls. 

Approximately one-third of patients were new-onset and the remainder were refractory patients. Eight 

cases exhibited pre-treatment hypsarrhythmia based on visual EEG review. The most common specific 

etiologies included tuberous sclerosis complex (n = 5), focal cortical dysplasia (n = 5), hypoxic-ischemic 

encephalopathy (n = 4), and intraventricular polymicrogyria (n = 3). The mean clip duration was 24.3 

minutes (+/- 6.3 minute standard deviation). Example EEG traces for the two cohorts (cases and 

controls) and two brain states (wakefulness and sleep) are shown in Figure 2, although it should be 

noted that the EEGs varied widely across subjects and time. Some clips were shortened due to frequent 

artifacts or arousals during sleep; however, the computational metrics can still be robustly measured 

with much shorter segments of data. The estimation of the DFA exponent requires the longest EEG 

segments, roughly seven minutes (Smith et al. 2020); only one out of 400 EEG clips was less than seven 

minutes long. The percentage of data removed as artifactual is shown in Supplementary Table 2. 

 

Figure 2. Example EEG traces. (A) EEG for a case subject during wakefulness. (B) EEG for a case subject 

during sleep. (C) EEG for a control subject during wakefulness. (D) EEG for a control subject during sleep. 

Table 2. Clinical and demographic characteristics of the study population 

 All Cases 
(n = 50) 

Age-Matched 
Cases 

(n = 40) 

Age at EEG, months1 11.2 (7.7, 20.8) 11.0 (7.6, 22.6) 

Female, n (%) 23 (46%) 20 (50%) 
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Age of onset of epileptic spasms, months1 7.5 (4.8, 12.9) 7.4 (4.6, 11.8) 

Normal development at onset of epileptic spasms 25 (50%) 20 (50%) 

Disease status at baseline EEG   

 New onset, n (%) 15 (30%) 14 (35%) 

 Refractory, n (%) 35 (70%) 26 (65%) 

Duration of epileptic spasms, months1 2.5 (0.6, 6.0) 2.4 (0.1, 6.0) 

Treatment immediately prior to baseline EEG   

 No treatment, n (%) 13 (26%) 10 (25%) 

 Hormonal therapy, n (%) 5 (10%) 4 (10%) 

 Vigabatrin, n (%) 15 (30%) 13 (33%) 

 Other anti-seizure drugs, n (%) 31 (62%) 25 (63%) 

Known etiology 37 (74%) 31 (78%) 

 Structural etiology 27 (54%) 22 (55%) 

 Genetic etiology 16 (32%) 14 (35%) 
1Median (interquartile range) 
2New onset defined as epileptic spasms reported not more than 30 days prior to EEG, and without specific 
treatment (i.e. prednisolone, ACTH, or vigabatrin) 

 
 
3.2 High amplitude EEG in ES 

 During both wakefulness and sleep, the EEG amplitude was higher in ES patients than controls. 

Significant differences between the distributions of amplitude values can be seen in a representative 

example from channel Cz (one-tailed Kolmogorov-Smirnov test, p<0.001 for wake and sleep, Figure 3A). 

The differences between ES and control subjects were significant in all channels (p<0.05 for all channels 

in wake and sleep, adjusted for multiple comparisons using the BH procedure), and the spatial variation 

of the amplitude values was similar between groups (Figure 3B). The highest median EEG amplitude was 

situated frontally in both groups during wakefulness (Figure 3B, top row), while the highest median EEG 

amplitude was located more centrally during sleep (Figure 3B, bottom row). Lower amplitudes in the 

temporal channels may be due to the use of a linked-ear reference. 
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Figure 3. EEG amplitude is higher in epileptic spams (ES) patients than controls. (A) Empirical 

cumulative distribution functions (CDFs) from the Cz electrode during wakefulness (top) and sleep 

(bottom). The solid line indicates the median of the group CDF values, and the shaded region covers the 

interquartile range for the ES patients (red) and the controls (blue). (B) Topographic maps of median EEG 

amplitude for ES patients (left column) and controls (right column) during wakefulness (top row) and 

sleep (bottom row). 

 

3.2 High EEG spectral power in ES 

During wakefulness and sleep, ES patients exhibited globally higher power when compared to 

the control group (Figure 4); the number of 5-second epochs used for this analysis can be found in 

Supplementary Table 3. In wakefulness (Figure 4A, top), the delta and theta band power were 

significantly higher in ES subjects compared to controls for all EEG channels; in the higher frequency 

bands, all channels exhibited higher power in ES subjects except T5 and T6 in the alpha band and Fp1, 

Fp2, F4, F7, F8, T3, T4, T5, and T6 in the beta band (one-tailed Wilcoxon rank-sum, BH-adj, p<0.05 across 

all frequency bands and channels). During sleep (Figure 4A, bottom), ES subjects exhibited significantly 

higher EEG power in all frequency bands and channels (one-tailed Wilcoxon rank-sum, BH-adj, p<0.05 

across all frequency bands and channels). These results are displayed as a decibel change relative to 

control subjects (Figure 4A), and the raw power spectra for ES patients and control subjects are also 

provided for reference (Supplementary Figure 1). The SEF metric also reflects these differences in the 

power spectra between the two groups. During wakefulness, the SEF values for ES patients were 

significantly lower than controls in all channels (BH-adj. p<0.05), and the lowest SEF values were in the 

central head regions in both groups (Figure 4B, top row). During sleep, we found similar spatial variation 
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of SEF values (Figure 4B, bottom row), but the differences were only statistically significant in channels 

O1 and O2 (BH-adj. p<0.05). Sleep was generally associated with lower SEF values than wakefulness.  

 

Figure 4. EEG spectral power is higher in epileptic spams (ES) patients than controls. (A) EEG power 

spectra for ES patients, relative to control subjects, during wakefulness (top) and sleep (bottom). (B) 

Topographic maps of spectral edge frequency (SEF) for ES patients (left column) and controls (right 

column) during wakefulness (top row) and sleep (bottom row). 

 

3.3 Low permutation entropy in ES 

During wakefulness, Shannon entropy values were significantly higher in ES patients than 

control subjects in the delta frequency band, but significantly lower in the alpha frequency band (Figure 

5A) (BH-adj. p<0.05). Shannon entropy values were also lower for ES patients in all frequency bands 

during sleep, with the difference being significant in the theta, alpha, and beta frequency bands (BH-adj. 

p<0.05, Figure 5A).  

Similar to the results for Shannon entropy, the permutation entropy was generally lower in ES 

patients compared to controls. The permutation entropy values were significantly lower in ES patients in 

the delta and theta frequency bands during wakefulness (Figure 5B) (BH-adj. p<0.05). However, during 

sleep, the permutation entropy values were significantly lower in the delta and beta frequency bands, 

but significantly higher in the theta band (Figure 5B) (BH-adj. p<0.05). 
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Figure 5. EEG entropy is lower in epileptic spams (ES) patients than controls. (A) Shannon entropy and 

(B) permutation entropy for ES patients (red) and control subjects (blue) during wakefulness (left 

subfigure) and sleep (right subfigure). The data points comprising the boxplots represent the mean 

entropy across channels for single subjects. Asterisks indicate significance of p<0.05, corrected for 

multiple comparisons. 

 

3.4 Long-range temporal correlations distinguish ES patients from control subjects 

 To assess differences in the strength of long-range temporal correlations, we plotted the DFA 

intercept, DFAi, against the DFA exponent, DFAe, for all groups (Figure 6A). Consistent with our prior 

work (Smith et al. 2017), we found that DFAe and DFAi were negatively correlated and that the DFAi 

values for ES patients and controls were largely non-overlapping. To better assess statistical differences 

between DFAe and DFAi, we also show boxplots of the DFA exponent (Figure 6B) and DFA intercept 

(Figure 6C). All differences were tested with a Wilcoxon rank-sum test, corrected via Benjamini-
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Hochberg procedure with adjusted p<0.05. During wakefulness, the DFAe values of each group did not 

significantly differ from one another in any frequency band (Figure 6B, top row). In sleep, the DFAe 

values for ES patients were significantly higher in the delta band compared to controls (Figure 6B, 

bottom row). In contrast, the DFAi values for ES patients were significantly higher than the control 

infants in all frequency bands in both awake and sleep data except for the delta frequency band during 

sleep (Figure 6C).  

 

Figure 6. Long-range temporal correlations are altered in epileptic spams (ES) patients; in particular, 

the detrended fluctuation analysis (DFA) intercept is lower in ES patients compared to controls. (A) 

Scatterplots of DFA parameters, DFAe and DFAi, for each subject in wakefulness (top row) and sleep 

(bottom row). Results are shown for ES (red) and control (blue) subjects in all frequency bands. (B) Same 

data as in (A), represented as boxplots of DFA exponents and (C) boxplots of DFA intercepts for all 

frequency bands. Asterisks indicate significance of p<0.05, corrected for multiple comparisons. 

3.5 Stronger EEG functional connectivity in ES 

 Overall, we found stronger functional connectivity networks during sleep compared to 

wakefulness (Figure 7). Using the cross-correlation functional connectivity measure, ES patients 
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exhibited stronger networks compared to controls in both wakefulness and sleep (Figure 7A). More 

specifically, during wakefulness, the ES patients exhibited significantly stronger cross-correlation 

connections than the normal infants in 98 of the 171 possible electrode pairs (57.3%) (Figure 7A, top 

row) (BH-adj. p<0.05). Similar results were obtained during sleep, with 78 of the 171 possible electrode 

pairs (45.6%) exhibiting statistically stronger connectivity values than the control group (Figure 7A, 

bottom row) (BH-adj. p<0.05). 

 The PLI-derived connectivity networks were visually similar in structure to the networks 

obtained with cross-correlation. Similar to cross-correlation, ES patients exhibited stronger networks 

when compared to controls in both wakefulness and sleep. In wakefulness, 144/171 (84.2%) of the ES 

patient functional connections were significantly stronger than the control subjects (Figure 7B, top row) 

(BH-adj. p<0.05), while 152/171 (88.9%) connections were significantly stronger during sleep (Figure 7B, 

bottom row) (BH-adj. p<0.05).  

 

Figure 7. Patients with epileptic spams (ES) have stronger functional connectivity networks than 

controls. Mean functional connectivity maps are shown for ES patients (left column) and controls (right 

column) in wakefulness (top row) and sleep (bottom row). (A) Cross correlation-based functional 

connectivity was measured in one-second epochs, and overall connection strength is defined as the 

proportion of significant one-second epochs. Connection strength is represented by the color of the 

edges. For visualization, graph edges are displayed if the connection strength between two electrodes 

exceeds 0.075. (B) Functional connectivity networks based on phase-lag index were assessed in eight-

second epochs, and statistical significance was tested via phase-shuffled surrogate data. The pseudo-

binary matrices were averaged over all available epochs. For visualization, graph edges are displayed if 

the connectivity strength between two electrodes exceeds 0.2. 

3.6 Multivariable classification of cases and controls 

Individually, the EEG metrics could be used to classify ES cases and controls, with PLI 

connectivity, SEF during wakefulness, and Shannon entropy having the highest accuracy (86.7%, 86.7%, 

and 85%, respectively). Results for all metrics, including sensitivity and specificity are shown in 

Supplementary Table 4. We then explored whether a multivariable logistic regression model could be 
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developed to accurately discriminate cases from controls using multiple computational metrics in a 

simultaneous fashion.  Using the age-matched cohorts (40 cases and 20 controls), our model utilized 

sleep measures of functional connectivity (phase-lag index in the delta frequency band), Shannon 

entropy in the beta frequency band, and the DFA intercept in the beta band. Using the regression 

coefficients, we devised a metric, M, defined as follows: 

𝑀 = (0.661)(𝑃𝐿𝐼𝑠𝑙𝑒𝑒𝑝) − (3.159)(𝐻𝑠𝑙𝑒𝑒𝑝) + (6.730)(𝐷𝐹𝐴𝑖,𝑠𝑙𝑒𝑒𝑝) 

where PLI is the phase lag index, H is Shannon entropy and DFAi is the intercept derived from the DFA 

analysis. As illustrated in Figure 8, the median M was higher among cases than controls (p<0.001), and 

when evaluated as a classifier with receiver operating characteristic (ROC) analysis, it yielded an area 

under the curve (AUC) of 96%. In an exploratory internal validation, we evaluated the accuracy with 

which M could discriminate the 10 cases and 30 controls that remained after the selection of the age-

matched cohorts. Among these 40 additional patients, median M remained higher among cases (0.006), 

but classification of individual patients was compromised, as suggested by AUC=79%. Recognizing that 

these remaining cases and controls were age-mismatched and included numerous patients who were 

far older than typical patients with epileptic spasms, we found that favorable classification was 

preserved by excluding any of the additional patients whose age was greater than 4 years, as suggested 

by AUC = 93%. Similarly, considering all 100 candidate cases and controls, while excluding the 4 cases 

and 22 controls who were older than 4 years, we again observed favorable classification (AUC = 94%). As 

illustrated in Figure 9, poor classification performance among older patients likely reflects a 

“pseudomaturation” among cases, such that their entropy and functional connectivity metrics resemble 

those of older normal controls to some extent. 

 

Figure 8. Computational EEG measures enable classification of epileptic spams (ES) patients and 

controls. (A) Values of the multivariable metric, 𝑀, derived from logistic regression coefficients, for 

controls (left, blue) and ES patients (right, red). The metric was based on phase-lag index functional 
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connectivity, Shannon entropy, and the detrended fluctuation analysis (DFA) intercept. (B) A receiver 

operating characteristic (ROC) curve was created by sweeping through values of 𝑀 and measuring the 

accuracy (sensitivity and specificity) of classifying individual subjects as ES patients or controls. The area 

under the curve was 0.96, indicating that the metric 𝑀 can distinguish between the two groups. 

 

 

Figure 9. Computational EEG metrics exhibit some dependence on age, particularly for subjects over 

four years old. The values of (A) phase-lag index connectivity, (B) Shannon entropy, and (C) detrended 

fluctuation analysis (DFA) intercept, are shown as a function of subject age for epileptic spasms (ES) 

patients (red triangles) and control subjects (blue circles). Older patients are difficult to classify, as the 

values of phase-lag index connectivity and Shannon entropy for ES patients overlap with those of control 

subjects over four years old. Data for all 50 ES patients and 50 control subjects are shown. 

3.7 Sensitivity Analyses 
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Given that we identified a diverse cohort of cases, including new-onset and refractory epileptic 

spasms, both with and without ongoing antiseizure medication treatment, we conducted a series of 

sensitivity analyses to assess whether case-versus-control group differences could have been affected by 

these factors. With stratification by either (1) new-onset versus refractory, or (2) presence versus 

absence of antiseizure medication, we performed sequential multivariable logistic regression in which 

the outcome was case/control status. The predictor variables included each computational EEG 

attribute (evaluated individually) as well as ln-transformed age to adjust for the impact of age. In 

general, the extent to which each computational attribute predicted case versus control status was not 

substantially affected by stratification. However, small effects were seen in several specific comparisons. 

With stratification by new-onset versus refractory, we observed that differences in amplitude and 

spectral edge frequency were more strongly predictive of case/control status among new-onset 

patients. Similarly, with stratification by medication exposure, the strength of long-range temporal 

correlations was more strongly associated with case/control status among patients treated with anti-

seizure medication. In both of these cases, it was only the magnitude of the model coefficients that 

were affected; the sign remained unchanged. There was only one analysis—evaluation of amplitude 

with stratification for medication exposure—in which stratification changed the nature of the 

interaction: When limiting the analysis to patients without treatment, higher amplitude was associated 

with higher likelihood of being a case, whereas when limiting the analysis to patients with ongoing anti-

seizure therapy, higher amplitude was associated with lower likelihood of being a case. Lastly, we 

conducted a series of exploratory analyses focused only on cases. After adjustment for age, we found no 

significant difference for any computational EEG attribute when (1) comparing new-onset cases with 

refractory cases, or (2) comparing cases with treatment to cases without treatment.  

IV. Discussion 

We analyzed EEG data from a large, diverse cohort of epileptic spasms patients and identified 

multiple computational EEG markers that differ significantly from normal infants. This study validates 

previous work on a smaller, more homogeneous cohort of patients (Smith et al. 2017, 2018; Shrey et al. 

2018). The results are more rigorous, as we have included a larger number of subjects, evaluated both 

sleep and awake EEG recordings, repeated multiple measurements per subject, and used randomization 

and blinding to mitigate potential bias in the selection of patients and EEG samples. This is the largest 

and most comprehensive study of its kind.  

In our previous pilot study, we retrospectively identified 21 patients with new-onset ES that 

were treated at the Children’s Hospital of Orange County and had varying etiologies. The subject age 

range was narrow (median 6.3, IQR 5.2-8.1 months) and most presented with hypsarrhythmia on the 

pre-treatment EEG (Smith et al. 2018). In contrast to that study, this cohort included 40 ES patients, with 

only eight patients exhibiting pre-treatment hypsarrhythmia, and older subjects with a wider age range 

(median 11.0, IQR 7.6-22.6 months) at the time of treatment. Despite these differences, these two 

independent studies produced consistent results and suggest that the proposed metrics are robust: 

Amplitude. Amplitude is an EEG feature that is often unusually high in ES (Stamps et al. 1959; 

Hrachovy et al. 1984; Pavone et al. 2013). Hypsarrhythmia is a high-amplitude pattern, and diffuse 

slowing is a common feature in both ictal and interictal data (Nehlig et al. 2012). Only eight of the forty 

patients in this cohort presented with hypsarrhythmia on the pre-treatment EEG; despite that, we found 

that the EEG had a higher amplitude in ES compared to controls (Table 3), which matches the results 



19 
 

from our previous study (Smith et al. 2018). Thus, the differences we report here are not merely 

reflecting the presence of hypsarrhythmia, suggesting that amplitude may have value as a general 

biomarker of epileptic spasms.  

Power and Spectral Edge Frequency. Consistent with the finding of high amplitude in ES, the 

EEG power of ES patients was significantly higher than control subjects (Table 3). This is consistent with 

the clinical findings of diffuse slowing in the pre-treatment EEG (Nehlig et al. 2012). Although we only 

analyzed frequencies up to 30 Hz in this study, it has been noted that fast activity (14-50 Hz) may play an 

important role in ES (Inoue et al. 2008; Wu et al. 2008b). Even higher frequency ranges (40-150 Hz) may 

have relevance in ES as well (Kobayashi et al. 2004; Nariai et al. 2020), but the sampling rate of our data 

precluded this analysis. Particularly during wakefulness, the spectral edge frequency further highlighted 

the distinction in the frequency characteristics of ES patients in comparison with controls, with lower 

SEF values signaling significantly higher power in the lower frequency bands. The SEF metric is one way 

to summarize differences across all frequencies in the power spectra using a single measurement.  

Entropy. Shannon entropy has been reported to be lower in epilepsy patients than healthy 

subjects (Kannathal et al. 2005a, 2005b, 2014; Rosso et al. 2005). From a nonlinear dynamics 

perspective, this is because epileptic data often exhibits a lower dimension than healthy data, which is 

more stochastic in nature. Specifically in ES, it was found that hypsarrhythmia exhibited lower 

dimension and lower entropy than healthy control data, but the time series was not as nonlinear as 

seizure data (Van Putten and Stam 2001). Corroborating this literature, we found that the Shannon 

entropy values during sleep were lower in ES patients when compared to control patients. However, 

during wakefulness, the Shannon entropy in ES patients was only significantly lower than controls in the 

alpha frequency band. This may be due to the increased likelihood of residual EEG artifacts during 

wakefulness. Permutation entropy investigates the organization of the time series while accounting for 

the short-term temporal structure of the data. Permutation entropy was significantly lower in ES 

patients compared to control subjects in the delta and theta frequency bands during wakefulness, and in 

the delta and beta frequency bands during sleep (Table 3). 

Long-range temporal correlations. We used detrended fluctuation analysis (DFA) to compare 

the temporal structure of the EEG data for ES and control subjects, specifically by measuring power-law 

scaling and long-range temporal correlations. We previously showed that long-range temporal 

correlations of EEG amplitude modulations were weaker in new onset ES patients compared to controls, 

and that DFA exponent values normalized with successful treatment (Smith et al. 2017). In contrast, 

here we found that the DFA exponents of the ES patients were not significantly different from the 

control group during wakefulness or sleep, except for the delta frequency band during sleep. The 

intercept, however, was significantly higher in the ES patient group in comparison to the control group 

in all frequency bands in wakefulness and in all except the delta band during sleep, generally providing 

excellent separation between the two groups (Table 3). The DFA intercept scales logarithmically with the 

variance of the amplitude envelope (Smith et al. 2017), suggesting that the EEG in ES patients not only 

has a high amplitude, but also that this amplitude varies widely over time.  

Functional connectivity. The EEG patterns in ES have been hypothesized to be driven by 

neuronal networks including subcortical structures which motivated our analysis of functional 

connectivity. For example, studies with SPECT (Chiron et al. 1993), PET (Chugani et al. 1992), fMRI 

(Siniatchkin et al. 2007), and EEG source localization (Japaridze et al. 2013) found that subcortical-
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cortical interactions may play a role in the development of ES (Chiron et al. 1993). This could explain 

how diffusely abnormal EEG patterns are observed despite focal etiologies. We assessed functional 

connectivity in two ways. We first used cross-correlation, which has been shown to reveal stable, 

patient-specific networks in healthy subjects (Chu et al. 2012) as well as ES patients (Shrey et al. 2018). 

Previously, long-range, cross-hemispheric connections were observed in ES patients both with 

coherence (Burroughs et al. 2014) and cross-correlation (Shrey et al. 2018). Here, we found that 

connectivity strengths were higher in ES in most channel pairs in cross correlation-based networks, and 

we observed more long-range cross-hemispheric connections in ES compared to controls, corroborating 

previous work (Table 3) (Burroughs et al. 2014; Shrey et al. 2018). Similarly, using PLI to assess phase-

based connectivity, ES subjects exhibited significantly stronger connections during wakefulness and 

sleep. We chose to analyze the delta frequency band because it exhibited the greatest power 

differences between ES patients and control subjects. Moreover, we expected it to correspond most 

closely to the broadband cross-correlation measure, which had demonstrated relevance in previous 

studies. Across both subject groups and functional connectivity metrics, the functional connections were 

stronger during sleep than wakefulness. 

Table 3. Summary of ES results, relative to control subjects, for each computational metric. 

Abbreviations: Delta frequency band (𝛿), theta frequency band (𝜃), alpha frequency band (𝛼), beta 

frequency band (𝛽), N.S. (not significant). 

STATE Wake Sleep 

FREQUENCY BAND 𝛿 𝜃 𝛼 𝛽 𝛿 𝜃 𝛼 𝛽 

Amplitude Higher Higher 

Power Spectrum Higher Higher Higher N.S. Higher Higher Higher Higher 

Spectral Edge Frequency Lower N.S. 

Shannon Entropy Higher N.S. Lower N.S. N.S. Lower Lower Lower 

Permutation Entropy Lower Lower N.S. N.S. Lower Higher N.S. Lower 

LRTCs: DFA Exponent N.S. N.S. N.S. N.S. Higher N.S. N.S. N.S. 

LRTCs: DFA Intercept Higher Higher Higher Higher N.S. Higher Higher Higher 

Functional Connectivity: 
Cross-correlation 

Stronger (57.3% of connections) Stronger (45.6% of connections) 

Functional Connectivity: 
Phase-Lag Index 

𝛿 band: Stronger (84.2% of 
connections) 

𝛿 band: Stronger (88.9% of 
connections) 

 

Limitations. Although we attempted to remove as many artifacts as possible, we note that some 

results may have been affected by residual artifactual data. For example, eye movements and muscle 

artifacts may have contributed to the high frontal amplitude and higher temporal power observed 

during wakefulness (Figure 4). Muscle artifact may have contributed to stronger connectivity in the 

peripheral (hat-band) connections and the skewing of the SEF topological map toward the temporal 

channels.  Additionally, the choice of reference may have affected the metric values; the higher 

amplitude and lower SEF in the central channels may be due the choice of the linked ear reference. We 

acknowledge these effects and attempted to minimize their influence on the metric values as much as 

possible, particularly by comparing to a normal control group that is susceptible to the same types and 

occurrences of artifacts. Additionally, we note that in some of the metrics, the sleep/wake state played a 

role in whether the metric successfully distinguished ES patients from control subjects. Further 
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investigation of the differences in the EEG profiles of ES patients during sleep and wakefulness may help 

identify features that are consistently present regardless of the patient’s sleep/wake state; alternatively, 

this may suggest to clinicians which specific features are relevant, based on whether the patient is 

awake or asleep. Moreover, requiring that sleep EEG data be collected from one specific sleep stage 

could increase the consistency of the metrics across subjects and improve our classification results. 

Conclusion. The consistency of the results for ES patients across wide ranges of ages, etiologies, 

and severity (new onset vs. refractory) indicate that these characteristics of the EEG may be consistently 

present in epileptic spasms patients. As lead time is one of the strongest prognostic factors in these 

children, stable metrics that quantify the disease add value to current diagnostic tools. We believe these 

metrics have the potential to significantly enhance clinical decision making. In particular, as suggested 

by our logistic-regression derived classifier, these metrics may improve diagnostic accuracy. Future 

studies will also investigate potential algorithms to identify pre-symptomatic patients, predict response 

to treatment, measure treatment efficacy, and predict relapse.  
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